Publications by authors named "Alan Raetz"

The base excision repair glycosylase MUTYH prevents mutations associated with the oxidatively damaged base, 8-oxo-7,8-dihydroguanine (OG), by removing misincorporated adenines from OG:A mispairs. Defects in OG:A repair in individuals with inherited MUTYH variants are correlated with the colorectal cancer predisposition syndrome known as -associated polyposis (MAP). Herein, we reveal key structural features of OG required for efficient repair by human MUTYH using structure-activity relationships (SAR).

View Article and Find Full Text PDF

Objective: Assess if MEK inhibitor blockade of RAS-ERK pathway adaptive response in high grade serous ovarian cancers (HGSOC) improves platinum sensitivity.

Methods: Three HGSOC cell lines and three patient derived organoid (PDOs) samples from ascites of platinum resistant HGSOC patients were collected. Cell lines and PDOs were exposed to carboplatin and MEK inhibitors cobimetinib or trametinib.

View Article and Find Full Text PDF

Background: TP53 mutations occur in more than 50% of cancers. We sought to determine the effect of the intragenic P72R single nucleotide polymorphism (SNP; rs1042522) on the oncogenic properties of mutant p53.

Methods: P72R allelic selection in tumors was determined from genotype calls and a Gaussian distributed mixture model.

View Article and Find Full Text PDF

The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments.

View Article and Find Full Text PDF

Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation.

View Article and Find Full Text PDF

Higher expression of the human DNA repair enzyme MUTYH has previously been shown to be strongly associated with reduced survival in a panel of 24 human lymphoblastoid cell lines exposed to the alkylating agent -methyl-'-nitro--nitrosoguanidine (MNNG). The molecular mechanism of MUTYH-enhanced MNNG cytotoxicity is unclear, because MUTYH has a well-established role in the repair of oxidative DNA lesions. Here, we show in mouse embryonic fibroblasts (MEFs) that this MNNG-dependent phenotype does not involve oxidative DNA damage and occurs independently of both O-methyl guanine adduct cytotoxicity and MUTYH-dependent glycosylase activity.

View Article and Find Full Text PDF

MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types.

View Article and Find Full Text PDF

Many DNA repair enzymes, including the human adenine glycosylase MUTYH, require iron-sulfur (Fe-S) cluster cofactors for DNA damage recognition and subsequent repair. MUTYH prokaryotic and eukaryotic homologs are a family of adenine (A) glycosylases that cleave A when mispaired with the oxidatively damaged guanine lesion, 8-oxo-7,8-dihydroguanine (OG). Faulty OG:A repair has been linked to the inheritance of missense mutations in the MUTYH gene.

View Article and Find Full Text PDF

An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition.

View Article and Find Full Text PDF

Mammalian MutY glycosylases have a unique architecture that features an interdomain connector (IDC) that joins the catalytic N-terminal domain and 8-oxoguanine (OG) recognition C-terminal domain. The IDC has been shown to be a hub for interactions with protein partners involved in coordinating downstream repair events and signaling apoptosis. Herein, a previously unidentified zinc ion and its coordination by three Cys residues of the IDC region of eukaryotic MutY organisms were characterized by mutagenesis, ICP-MS, and EXAFS.

View Article and Find Full Text PDF

Biallelic germline mutations in the base excision repair enzyme gene MUTYH lead to multiple colorectal adenomas and carcinomas referred to as MUTYH-associated polyposis. MUTYH removes adenine misincorporated opposite the DNA oxidation product, 8-oxoguanine (OG), thereby preventing accumulation of G:C to T:A transversion mutations. The most common cancer-associated MUTYH variant proteins when expressed in bacteria exhibit reduced OG:A mismatch affinity and adenine removal activity.

View Article and Find Full Text PDF