Charge-stabilized colloidal suspensions display a rich variety of microstructural and thermodynamic properties, which are determined by electro-steric interactions between all ionic species. The large size asymmetry between molecular-scale microions and colloidal macroions allows the microion degrees of freedom to be integrated out, leading to an effective one-component model of microion-dressed colloidal quasi-particles. For highly charged colloids with strong macroion-microion correlations, nonlinear effects can be incorporated into effective interactions by means of charge renormalization methods.
View Article and Find Full Text PDFIn recent years, ionic microgels have garnered much attention due to their unique properties, especially their stimulus-sensitive swelling behavior. The tunable response of these soft, permeable, compressible, charged colloidal particles is increasingly attractive for applications in medicine and biotechnologies, such as controlled drug delivery, tissue engineering, and biosensing. The ability to model and predict variation of the osmotic pressure of a single microgel with respect to changes in particle properties and environmental conditions proves vital to such applications.
View Article and Find Full Text PDFThe response of soft colloids to crowding depends sensitively on the particles' compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2022
We explore structural correlations of strongly asymmetric mixtures of binary charged colloids within the primitive model of electrolytes considering large charge and size ratios of 10 and higher. Using computer simulations with explicit microions, we obtain the partial pair correlation functions between the like-charged colloidal macroions. Interestingly the big-small correlation peak amplitude is smaller than that of the big-big and small-small macroion correlation peaks, which is unfamiliar for additive repulsive interactions.
View Article and Find Full Text PDFIonic microcapsules are hollow shells of hydrogel, typically 10-1000 nm in radius, composed of cross-linked polymer networks that become charged and swollen in a good solvent. The ability of microcapsules to swell/deswell in response to changes in external stimuli (e.g.
View Article and Find Full Text PDFAs first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W.
View Article and Find Full Text PDFIonic microgel particles in a good solvent swell to an equilibrium size determined by a balance of electrostatic and elastic forces. When crowded, ionic microgels deswell owing to a redistribution of microions inside and outside the particles. The concentration-dependent deswelling affects the interactions between the microgels and, consequently, the suspension properties.
View Article and Find Full Text PDFThe authors demonstrate how the size and structure of the cavity of hollow charged microgels may be controlled by varying pH and ionic strength. Hollow charged microgels based on N-isopropylacrylamide with ionizable co-monomers (itaconic acid) combine advanced structure with enhanced responsiveness to external stimuli. Structural advantages accrue from the increased surface area provided by the extra internal surface.
View Article and Find Full Text PDFIonic microgels are soft colloidal particles, composed of crosslinked polymer networks, which ionize and swell when dispersed in a good solvent. Swelling of these permeable, compressible particles involves a balance of electrostatic, elastic, and mixing contributions to the single-particle osmotic pressure. The electrostatic contribution depends on the distributions of mobile counterions and coions and of fixed charge on the polymers.
View Article and Find Full Text PDFThe structure and function of polymers in confined environments, e.g., biopolymers in the cytoplasm of a cell, are strongly affected by macromolecular crowding.
View Article and Find Full Text PDFWe study swelling and structural properties of ionic microgel suspensions within a comprehensive coarse-grained model that combines the polymeric and colloidal natures of microgels as permeable, compressible, charged spheres governed by effective interparticle interactions. The model synthesizes the Flory-Rehner theory of cross-linked polymer gels, the Hertz continuum theory of effective elastic interactions, and a theory of density-dependent effective electrostatic interactions. Implementing the model using Monte Carlo simulation and thermodynamic perturbation theory, we compute equilibrium particle size distributions, swelling ratios, volume fractions, net valences, radial distribution functions, and static structure factors as functions of concentration.
View Article and Find Full Text PDFPhysical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors.
View Article and Find Full Text PDFInterparticle interactions and bulk properties of colloidal suspensions can be substantially modified by the addition of nanoparticles. Extreme asymmetries in size and charge between colloidal particles and nanoparticles present severe computational challenges to molecular-scale modeling of such complex systems. We present a statistical mechanical theory of effective electrostatic interactions that can greatly ease large-scale modeling of charged colloid-nanoparticle mixtures.
View Article and Find Full Text PDFIonic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion.
View Article and Find Full Text PDFMicrogels are soft colloidal particles that, when dispersed in a solvent, swell and deswell in response to changes in environmental conditions, such as temperature, concentration, and pH. Using Monte Carlo simulation, we model bulk suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial moves that allow particles to change size in accordance with the Flory-Rehner free energy of cross-linked polymer gels. We monitor the influence of particle compressibility, size fluctuations, and concentration on bulk structural and thermal properties by computing particle swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities.
View Article and Find Full Text PDFDepletion forces and macromolecular crowding govern the structure and function of biopolymers in biological cells and the properties of polymer nanocomposite materials. To isolate and analyze the influence of polymer shape fluctuations and penetrability on depletion-induced interactions and crowding by nanoparticles, we model polymers as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor of an ideal random walk. Within this model, we apply Monte Carlo simulation methods to compute the depletion-induced potential of mean force between hard nanospheres and crowding-induced shape distributions of polymers in the protein limit, in which polymer coils can be easily penetrated by smaller nanospheres.
View Article and Find Full Text PDFDepletion-induced interactions between colloids in colloid-polymer mixtures depend in range and strength on size, shape, and concentration of depletants. Crowding by colloids in turn affects shapes of polymer coils, such as biopolymers in biological cells. By simulating hard-sphere colloids and random-walk polymers, modeled as fluctuating ellipsoids, we compute depletion-induced potentials and polymer shape distributions.
View Article and Find Full Text PDFBy implementing the nonlinear Poisson-Boltzmann theory in a cell model, we theoretically investigate the influence of polyelectrolye gel permeability on ion densities and pH deviations inside the cavities of ionic microcapsules. Our calculations show that variations in permeability of a charged capsule shell cause a redistribution of ion densities within the capsule, which ultimately affects the pH deviation and Donnan potential induced by the electric field of the shell. We find that semipermeable capsules can induce larger pH deviations inside their cavities that can permeable capsules.
View Article and Find Full Text PDFWe investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels--soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure.
View Article and Find Full Text PDFJ Chem Phys
September 2014
Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2014
Polyelectrolyte microcapsules loaded with fluorescent dyes have been proposed as biosensors to monitor local pH and ionic strength for diagnostic purposes. In the case of charged microcapsules, however, the local electric field can cause deviations of ion densities inside the cavities, potentially resulting in misdiagnosis of some diseases. Using nonlinear Poisson-Boltzmann theory, we systematically investigate these deviations induced by charged microcapsules.
View Article and Find Full Text PDFThe coupling between the 'coffee-ring' effect and liquid-liquid phase separation is examined for ternary mixtures of solvent, polymer and semiconductor nanocrystal. Specifically, we study mixtures of toluene, polystyrene (PS) and colloidal silicon nanocrystals (SiNCs) using real-space imaging and spectroscopic techniques to resolve the kinetic morphology of the drying front for varied molecular weight of the PS. Our results demonstrate that the size of the polymer has a significant impact on both phase-separation and drying, and we relate these observations to simulations, measured and predicted binodal curves, and the observed shape of the flow field at the contact line.
View Article and Find Full Text PDFThe cell nucleus is a highly crowded environment, filled with a multicomponent, polydisperse mixture of biopolymers and nuclear bodies dispersed in a viscous solvent. With volume fractions approaching 20%, excluded-volume interactions play a key role in determining the structure, dynamics, and function of macromolecules in vivo. Under such constraints, the ensembles of macromolecular conformations can differ substantially from those prevailing in dilute solutions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
We present a theory of effective electrostatic interactions in polydisperse suspensions of charged macroions, generalizing to mixtures a theory previously developed for monodisperse suspensions. Combining linear response theory with a random phase approximation for microion correlations, we coarse grain the microion degrees of freedom to derive general expressions for effective macroion-macroion pair potentials and a one-body volume energy. For model mixtures of charged hard-sphere colloids, we give explicit analytical expressions.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2011
The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealises nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability.
View Article and Find Full Text PDF