Publications by authors named "Alan Pehrson"

Vortioxetine is a multimodal antidepressant with agonist activity at serotonin (5-HT) and 5-HT receptors that blocks the 5-HT transporter (SERT). Previously in male BTBR TItpr3/J (BTBR) mice, the 5-HT partial agonist buspirone and SERT blocker fluoxetine enhanced social interaction but did not reduce marble burying. We hypothesized that vortioxetine through its actions at SERT and 5-HT could improve BTBR sociability and via 5-HT could reduce burying better than sertraline, a selective SERT blocker.

View Article and Find Full Text PDF

In this chapter, we develop a model of μ- and δ-opioid receptor (OR) effects on cellular activity in the corticostriatal circuit after reviewing clinical data on cognitive and mood impairments in opioid substance use disorder (OUD), we use this model to derive information on the relevance of opioid actions in this circuit for cognition and reward. We find that the cognitive impairments and rewarding properties of acute μ-OR activation can reasonably explained by pharmacological actions in the corticostriatal circuit. However, long-term cognitive impairments and mood dysfunction observed in OUD are probably induced by opiate abuse-related degenerative mechanisms.

View Article and Find Full Text PDF

Attention impairment is a common feature of Major Depressive Disorder (MDD), and MDD-associated cognitive dysfunction may play an important role in determining functional status among this patient population. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in MDD patients, and may indirectly increase glutamate neurotransmission in brain regions classically associated with attention function. Previous non-clinical research suggests that vortioxetine has limited effects on attention.

View Article and Find Full Text PDF

Major Depressive Disorders (MDD) patients may exhibit cognitive deficits and it is currently unclear to which degree treatment with antidepressants may affect cognitive function. Preclinical and clinical observations showed that vortioxetine (VORT, an antidepressant with multimodal activity), presents beneficial effects on aspects of cognitive function. In addition, VORT treatment increases adult hippocampal neurogenesis (AHN) in rodents, a candidate mechanism for antidepressant activity.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is associated with cognitive impairments that may contribute to poor functional outcomes. Clinical data suggests that the multimodal antidepressant vortioxetine attenuates some cognitive impairments in MDD patients, but the mechanistic basis for these improvements is unclear. One theory suggests that vortioxetine improves cognition by suppressing γ-amino butyric acid (GABA)ergic neurotransmission, thereby increasing glutamatergic activation.

View Article and Find Full Text PDF

The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT receptor agonism, 5-HT receptor partial agonism, 5-HT, 5-HT, 5-HT receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods.

View Article and Find Full Text PDF

Prefrontal-subcortical circuits support executive functions which often become dysfunctional in psychiatric disorders. Vortioxetine is a multimodal antidepressant that is currently used in the clinic to treat major depressive disorder. Mechanisms of action of vortioxetine include serotonin (5-HT) transporter blockade, 5-HT receptor agonism, 5-HT receptor partial agonism, and 5-HT, 5-HT, and 5-HT receptor antagonism.

View Article and Find Full Text PDF

The antidepressant vortioxetine exerts its effects via modulation of several serotonin (5-HT) receptors and inhibition of the 5-HT transporter (SERT). Additionally, vortioxetine has beneficial effects on aspects of cognitive dysfunction in depressed patients. However, a global examination of the drug effect on brain network connectivity is still missing.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the multimodal antidepressant vortioxetine affects biological systems linked to major depressive disorder, focusing on its unique cognitive benefits compared to traditional antidepressants.
  • - Results indicate that vortioxetine regulates similar biological systems in both mice and rats, impacting important areas like neuroplasticity and transcriptional regulation across various brain regions and treatment methods.
  • - The findings suggest that vortioxetine's ability to enhance cognitive function may stem from its influence on networks involved in synaptic transmission and neurodevelopment, highlighting its potential for treating depression and improving cognitive performance.
View Article and Find Full Text PDF

Treatment-related sexual dysfunction is a common side effect of antidepressants and contributes to patient non-compliance or treatment cessation. However, the multimodal antidepressant, vortioxetine, demonstrates low sexual side effects in depressed patients. To investigate the mechanisms involved, sexual behavior was assessed in male and female rats after acute, and repeated (7 and 14 days) treatment with vortioxetine, flesinoxan (a 5-HT receptor agonist), CP-94253 (a 5-HT receptor agonist), or ondansetron (a 5-HT receptor antagonist).

View Article and Find Full Text PDF

Selective serotonin (5-HT, SERT) reuptake inhibitors (SSRIs) are the most commonly prescribed treatments for depression. However, they have delayed efficacy and can induce side-effects that can encourage discontinuation. Recently, agents have been developed, including vortioxetine (Trintellix), that augment SERT blockade with interactions at other targets.

View Article and Find Full Text PDF

The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity.

View Article and Find Full Text PDF

Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies.

View Article and Find Full Text PDF

The atypical antipsychotic drug clozapine remains one of most effective treatments for schizophrenia, given a lack of extrapyramidal side effects, improvements in negative symptoms, cognitive impairment, and in symptoms in treatment-resistant schizophrenia. The adverse effects of clozapine, including agranulocytosis, make finding a safe clozapine-like a drug a goal for drug developers. The drug discrimination paradigm is a model of interoceptive stimulus that has been used in an effort to screen experimental drugs for clozapine-like atypical antipsychotic effects.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission.

View Article and Find Full Text PDF

Vortioxetine is a novel multimodal antidepressant that acts as a serotonin (5-HT)3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B receptor partial agonist; 5-HT1A receptor agonist; and 5-HT transporter inhibitor in vitro. In preclinical and clinical studies vortioxetine demonstrates positive effects on cognitive dysfunction. Vortioxetine's effect on cognitive function likely involves the modulation of several neurotransmitter systems.

View Article and Find Full Text PDF

The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.

View Article and Find Full Text PDF

Previous work from this laboratory hypothesized that the multimodal antidepressant vortioxetine enhances cognitive function through a complex mechanism, using serotonergic (5-hydroxytryptamine, 5-HT) receptor actions to modulate gamma-butyric acid (GABA) and glutamate neurotransmission in key brain regions like the prefrontal cortex (PFC) and hippocampus. However, serotonergic receptors have circumscribed expression patterns, and therefore vortioxetine's effects on GABA and glutamate neurotransmission will probably be regionally selective. In this article, we attempt to develop a conceptual framework in which the effects of 5-HT, selective serotonin reuptake inhibitors (SSRIs), and vortioxetine on GABA and glutamate neurotransmission can be understood in the PFC and striatum-2 regions with roles in cognition and substantially different 5-HT receptor expression patterns.

View Article and Find Full Text PDF

Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine.

View Article and Find Full Text PDF

Similar to the time-course for treating depression, several weeks of administration are required for serotonin (5-HT) reuptake inhibitors to produce anxiolytic effects. Previous studies with the schedule-induced polydipsia paradigm (a putative preclinical anxiety model) have shown that repeated administration of antidepressant drugs is necessary to produce a suppression of polydipsia, which is interpreted as an anxiolytic-like effect. The present study sought to expand past findings by evaluating the selective 5-HT reuptake inhibitor (SSRI) fluoxetine and the 5-HT-norepinephrine reuptake inhibitor duloxetine in the schedule-induced polydipsia paradigm with rats.

View Article and Find Full Text PDF

Cognitive decline occurs during healthy aging, even in middle-aged subjects, via mechanisms that could include reduced stem cell proliferation, changed growth factor expression and/or reduced expression of synaptic plasticity genes. Although antidepressants alter these mechanisms in young rodents, their effects in older animals are unclear. In middle-aged mice, we examined the effects of a selective serotonin reuptake inhibitor (fluoxetine) and a multimodal antidepressant (vortioxetine) on cognitive and affective behaviors, brain stem cell proliferation, growth factor and gene expression.

View Article and Find Full Text PDF

It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders.

View Article and Find Full Text PDF

Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD's underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD.

View Article and Find Full Text PDF

Depression is frequently associated with cognitive disturbances. Vortioxetine is a multimodal acting antidepressant that functions as a 5-HT3 and 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and inhibitor of the 5-HT transporter. Given its pharmacological profile, the present study was undertaken to determine whether vortioxetine could modulate several preclinical parameters known to be involved in cognitive processing.

View Article and Find Full Text PDF