In this paper, a chromatic-dispersion-aware non-orthogonal discrete Fourier transform precoding (CDA-NODFTP) scheme is proposed for CD-constrained intensity-modulation and direct detection (IM/DD) multicarrier-signal transmission systems. The performance of the proposed CDA-NODFTP scheme is experimentally evaluated and compared with conventional DFTP and NODFTP schemes over a 50-km C-band dispersion-uncompensated link, utilizing 90-Gb/s orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC) signals. Experimental results show that the proposed CDA-NODFTP with adaptive spectral compression outperforms conventional DFTP, NODFTP, and the non-precoding schemes in terms of bit error rate (BER) performance.
View Article and Find Full Text PDFAn ultra-low-complexity third-order weight-sharing trigonometric nonlinear equalizer (WS-TNLE) is proposed to eliminate nonlinear signal distortions in short-reach optical interconnects exceeding net 200 Gb/s/λ. By replacing the second- and third-order nonlinear terms in a third-order weight-sharing diagonally pruned Volterra nonlinear equalizer (WS-DP-VNLE) with cosine and sine terms, respectively, the required number of real-valued multiplications per symbol of the proposed third-order WS-TNLE is significantly reduced to the same value as the number of weight-sharing kernels. When transmitting probabilistically shaped 16-level pulse amplitude modulation (PS-PAM-16) signals at net rates ranging from 200.
View Article and Find Full Text PDFAs a crucial nonlinear phenomenon, stimulated Raman scattering (SRS) plays multifaceted roles involved in forward and inverse problems. In fibre-optic systems, these roles range from detrimental interference that impairs optical performance to beneficial effects that enables various devices such as Raman amplifier. To obtain solutions of SRS, various numerical methods customized for different scenarios have been proposed.
View Article and Find Full Text PDFA novel inline Fabry-Perot interferometer (FPI) for simultaneous relative humidity (RH) and temperature monitoring is proposed. The sensing probe consists of a section of hollow core Bragg fiber (HCBF) spliced with a single-mode fiber pigtail. The end-face of the HCBF is coated with Chitosan and ultraviolet optical adhesive (UVOA), forming two polymer layers using a well-designed fabrication process.
View Article and Find Full Text PDFChromatic dispersion (CD) is always an obstacle to C-band high-speed intensity modulation and direct detection (IM/DD) transmissions, especially with a fiber reach of > 20 km. To reach beyond net-100-Gb/s IM/DD transmission over 50-km standard single mode fiber (SSMF), we for the first time present a CD-aware probabilistically shaped four-ary pulse amplitude modulation (PS-PAM-4) signal transmission scheme with a FIR-filter-based pre-electronic dispersion compensation (FIR-EDC) for C-band IM/DD transmission system. With the help of the FIR-EDC at the transmitter, 100-GBaud PS-PAM-4 signal transmission at 150-Gb/s line rate and 115.
View Article and Find Full Text PDFMode-group-division multiplexing (MGDM)-based intensity modulation direct detection (IM/DD) transmission is an attractive approach to increase the capacity for short-reach optical communication. In this Letter, a simple but versatile scheme of mode group (MG) filtering for MGDM IM/DD transmission is proposed. The scheme is applicable to any mode basis in the fiber, and it satisfies the needs of low complexity, low power consumption, and high system performance.
View Article and Find Full Text PDFA receive-diversity-aided power-fading compensation (RDA-PFC) scheme is proposed and demonstrated to eliminate the chromatic dispersion (CD)-induced power fading for C-band double-sideband (DSB) intensity modulation and direct detection (IM/DD) orthogonal frequency division multiplexing (OFDM) systems. By combining the responses before and after a dispersive element using a maximal-ratio combining (MRC) algorithm, the CD-induced power fading dips within the signal bandwidth of around 50 GHz can be effectively compensated for, which results in an up to 17.6-dB signal-to-noise ratio (SNR) improvement for the fading subcarriers after transmission over 10 km of standard single-mode fiber (SSMF).
View Article and Find Full Text PDFA highly sensitive inline gas pressure sensor based on the hollow core Bragg fiber (HCBF) and harmonic Vernier effect (VE) is proposed and experimentally demonstrated. By sandwiching a segment of HCBF between the lead-in single-mode fiber (SMF) and the hollow core fiber (HCF), a cascaded Fabry-Perot interferometer is produced. The lengths of the HCBF and HCF are precisely optimized and controlled to generate the VE, achieving a high sensitivity of the sensor.
View Article and Find Full Text PDFWe propose and demonstrate a high-efficiency silicon microring modulator for next-generation optical transmitters operating at line rates above 300 Gb/s. The modulator supports high-order PAM-8 modulation up to 110 Gbaud (330 Gb/s), with a driving voltage of 1.8 V.
View Article and Find Full Text PDFA highly sensitive relative humidity (RH) sensor based on Fabry-Perot interferometers (FPI) is proposed and experimentally demonstrated. The sensor is fabricated by splicing a segment of hollow core Bragg fiber (HCBF) with single mode fiber (SMF) and functionalized with chitosan and ultraviolet optical adhesive (UVOA) composite at the end of HCBF to form a hygroscopic polymer film. The reflection beams from the splicing point and the two surfaces of the polymer film generate the Vernier effect in the reflection spectrum, which significantly improves the humidity sensitivity of the sensor.
View Article and Find Full Text PDFTo cope with the nonlinear distortions and the chromatic dispersion (CD) induced power fading in double-side band (DSB) intensity modulation and direct detection (IM/DD) transmission systems, high-performance Volterra nonlinear equalizers (VNLEs) including Volterra feed-forward equalizer (VFFE) and Volterra decision-feedback equalizer (VDFE) are widely applied. However, the conventional VNLEs have high computational complexity, especially for longer memory lengths. In this paper, based on sparse and weight-sharing strategies for significant kernel reduction, we propose four low-complexity NLEs including a sparse diagonally pruned VDFE (S-DP-VDFE), a sparse diagonally pruned absolute-term DFE (S-DP-ATDFE), a weight-sharing DP-VDFE (WS-DP-VDFE), and a weight-sharing DP-ATDFE (WS-DP-ATDFE), and present a comprehensive comparison among them in terms of computational complexity and bit error ratio (BER) performance in a C-band 100-Gbit/s PAM-4 transmission system over 60-km standard single-mode fiber (SSMF).
View Article and Find Full Text PDFElectro-optic (EO) modulators with a high modulation bandwidth are indispensable parts of an optical interconnect system. A key requirement for an energy-efficient EO modulator is the low drive voltage, which can be provided using a standard complementary metal oxide semiconductor circuity without an amplifying driver. Thin-film lithium niobate has emerged as a new promising platform, and shown its capable of achieving driverless and high-speed EO modulators.
View Article and Find Full Text PDFIn C-band intensity modulation and direct detection (IM/DD) systems, the frequency-dependent power fading induced by chromatic dispersion (CD) and square-law detection limits the transmission capacity and distance, especially for beyond 100-Gb/s transmissions over a 100-km dispersion-uncompensated link. To reach this goal, we propose a scheme of nonlinear pre-distortion, novel, to the best of our knowledge, combined pulse shaping, and post nonlinear equalization for four-level pulse amplitude modulation (PAM-4)-based IM/DD systems. At the transmitter, the nonlinear pre-distortion is used to generate unequally spaced PAM-4 symbols for pre-compensating the nonlinearities.
View Article and Find Full Text PDFWe propose a simple two-step amplifier configuration algorithm based on signal power across different channels to improve the generalized signal-to-noise ratio (GSNR) performance of dynamic C + L-band links in the presence of amplifier spontaneous emission (ASE) noise, Kerr nonlinearity, and stimulated Raman scattering (SRS) using erbium-doped fiber amplifiers (EDFA). In step 1, ASE noise and Kerr nonlinearity are taken into account to derive sub-optimal signal power profiles at the beginning of each span using the local optimization global optimization (LOGO) strategy. The effect of SRS is compensated through amplifier gain pre-tilt in step 2.
View Article and Find Full Text PDFA nonlinearity-aware signal transmission scheme based on a low-complexity 3rd-order diagonally pruned absolute-term nonlinear equalizer (NLE) with weight sharing (DP-AT-NLE-WS) and rate-adaptable probabilistically shaped 16-level pulse amplitude modulation (PS-PAM-16) signal is proposed and experimentally demonstrated for C-band net-300-Gbit/s/λ short-reach optical interconnects. By replacing the multiplication operation with the absolute operation and applying weight sharing to reduce the kernel redundancy, the computational complexity of the proposed 3rd-order DP-AT-NLE-WS is reduced by >40% compared with the 3rd-order DP-Volterra NLE (DP-VNLE), DP-AT-NLE, and DP-VNLE-WS, with the achieved normalized general mutual information (NGMI) above a threshold of 0.857.
View Article and Find Full Text PDFA very-high-bandwidth integrated silicon microring modulator (MRM) designed on a commercial silicon photonics (SiP) platform for C-band operation is presented. The MRM has a 3 dB electro-optic (EO) bandwidth of over 67 GHz and features a small footprint of 24 µm × 70 µm. Using the MRM, we demonstrate intensity modulation-direct detection (IM-DD) transmission with 4-level pulse amplitude modulation (PAM-4) signaling of over 100 Gbaud.
View Article and Find Full Text PDFA low-complexity absolute-term based nonlinear feed-forward equalizer (FFE) combined with a decision-feedback equalizer (DFE) with weight sharing (AT-NLE-WS) is proposed and experimentally performed in a C-band 85-GBaud on-off keying (OOK) transmission system over a 100-km standard single-mode fiber (SSMF). By applying the k-means clustering algorithm to reduce weight redundancy, the required number of real-valued multiplications per symbol (RNRM) of the proposed AT-NLE-WS is only 14 for a bit error ratio (BER) under a KP4-forward error correction (FEC) threshold of 2.4 × 10.
View Article and Find Full Text PDFTo combat chromatic dispersion (CD) in intensity modulation and direct detection (IM/DD) systems, three chirp-free demonstrations are experimentally performed with an iterative pre-electronic dispersion compensation (pre-EDC) algorithm at the transmitter end, for 28 GBaud non-return-to-zero on-off keying (NRZ-OOK), 56 GBaud NRZ-OOK and 28 GBaud four-level pulse-amplitude-modulation (PAM-4) signals, over distances of 100 km, 50 km and 40 km of single mode fiber (SMF), respectively. The iterative pre-EDC algorithm is based on the Gerchberg-Saxton (GS) algorithm, which treats the unconstrained phase at the direct detection receiver as a degree of freedom. At the receiver side, only a linear fractionally-spaced (T/2) post-feed-forward equalizer (post-FFE) is employed to combat the residual inter-symbol interference (ISI).
View Article and Find Full Text PDFA low-complexity sparse absolute-term based nonlinear equalizer (AT-NLE) is proposed to eliminate the nonlinear signal distortions for intensity modulation and direct detection (IM/DD) systems. By performing the orthogonal matching pursuit (OMP) algorithm to adaptively obtain the significant kernels of both the linear and absolute terms, the computational complexity of the proposed sparse AT-NLE is dramatically reduced and independent of the memory length. The performance of the proposed sparse AT-NLE is experimentally evaluated in a C-band 56-Gbit/s four-level pulse-amplitude modulation (PAM-4) system over a 30-km standard single-mode fiber (SSMF).
View Article and Find Full Text PDFThe thin-film lithium niobate structure has been used recently to construct compact and high-performance electro-optical modulators. Due to the moderate electro-optical coefficient of the lithium niobate material, the device length of such a modulator is still long, a few centimeters usually. Here, a folded Mach-Zehnder interferometer based modulator on -cut thin-film lithium niobate is demonstrated.
View Article and Find Full Text PDFA two-dimensional grating coupler for coupling light between a standard single-mode fiber and ridge waveguides on an X-cut lithium niobate thin-film is designed and demonstrated. Using circular holes for grating cells, simulated coupling losses reach -3.88 dB at 1550 nm and -5.
View Article and Find Full Text PDFIn long-haul optical communication systems, compensating nonlinear effects through digital signal processing (DSP) is difficult due to intractable interactions between Kerr nonlinearity, chromatic dispersion (CD) and amplified spontaneous emission (ASE) noise from inline amplifiers. Optimizing the standard digital back propagation (DBP) as a deep neural network (DNN) with interleaving linear and nonlinear operations for fiber nonlinearity compensation was shown to improve transmission performance in idealized simulation environments. Here, we extend such concepts to practical single-channel and polarization division multiplexed wavelength division multiplexed experiments.
View Article and Find Full Text PDFSpectral efficient frequency division multiplexing (SEFDM) can offer a higher spectral efficiency (SE) than orthogonal frequency division multiplexing (OFDM). In this work, we propose a diversity technique based on SEFDM for beyond 100-Gb/s optical intensity modulation and direct detection (IM/DD) long reach (LR) applications. We mathematically demonstrate that the self-created inter-carrier interference of SEFDM signals can be reused to achieve a diversity gain on each sub-carrier and, in turn, improve the tolerance to power fading induced by chromatic dispersion (CD) in IM/DD LR links.
View Article and Find Full Text PDFWe propose and experimentally demonstrate a modulation-format-transparent dual-polarization (DP) transmitter (Tx) in-phase/quadrature (IQ) imbalance estimation scheme based on maximum likelihood independent component analysis (ML-ICA). The proposed scheme can separate Tx IQ imbalance from polarization crosstalk and phase noise and achieve accurate IQ imbalance estimation without training data and the information of modulation format. Firstly, the complex-ML-ICA is used to implement format-transparent polarization de-multiplexing to remove polarization crosstalk; then the real-ML-ICA is employed to estimate inverse IQ mixing matrix and compensate Tx IQ imbalance/phase noise on each polarization channel.
View Article and Find Full Text PDFWe propose, numerically analyze and experimentally demonstrate a low-complexity, modulation-order independent, non-data-aided (NDA), feed-forward carrier phase recovery (CPR) algorithm. The proposed algorithm enables synchronous decoding of arbitrary square-quadrature amplitude modulation (QAM) constellations and it is suitable for a realistic hardware implementation based on block-wise parallel processing. The proposed method is based on principal component analysis (PCA) and it outperforms the well-known and widely used blind phase search (BPS) algorithm at low signal-to-noise ratio (SNR) values, showing much lower cycle slip rate (CSR) both numerically and experimentally.
View Article and Find Full Text PDF