Publications by authors named "Alan Nurden"

Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the and genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate.

View Article and Find Full Text PDF

This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbβ3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.

View Article and Find Full Text PDF

Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production.

View Article and Find Full Text PDF

Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear.

View Article and Find Full Text PDF

Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system.

View Article and Find Full Text PDF

Glanzmann thrombasthenia (GT) is the most widely studied inherited disease of platelet function. Platelets fail to aggregate due to a defect in platelet-to-platelet attachment. The hemostatic plug fails to form and a moderate to severe bleeding diathesis results.

View Article and Find Full Text PDF

Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules.

View Article and Find Full Text PDF

Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding.

View Article and Find Full Text PDF

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis.

View Article and Find Full Text PDF

Background: Macrothrombocytopenia (MTP) is a rare but enigmatic complication of Glanzmann thrombasthenia (GT), an inherited bleeding disorder caused by the absence of platelet aggregation due to deficiencies of the αIIbβ3 integrin.

Objectives: We report a family with type I GT and a prolonged bleeding time but unusually associated with congenital mild thrombocytopenia and platelet size heterogeneity with giant forms.

Methods And Results: Sanger sequencing of DNA from the propositus identified 2 heterozygous ITGB3 gene mutations: p.

View Article and Find Full Text PDF

Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy.

View Article and Find Full Text PDF

In contrast to the inherited platelet disorder given by mutations in the ITGA2B and ITGB3 genes, mucocutaneous bleeding from a spontaneous inhibition of normally expressed αIIbβ3 characterizes acquired Glanzmann thrombasthenia (GT). Classically, it is associated with autoantibodies or paraproteins that block platelet aggregation without causing a fall in platelet count. However, inhibitory antibodies to αIIbβ3 are widely associated with primary immune thrombocytopenia (ITP), occur in secondary ITP associated with leukemia and related disorders, solid cancers and myeloma, other autoimmune diseases, following organ transplantation while cytoplasmic dysregulation of αIIbβ3 function features in myeloproliferative and myelodysplastic syndromes.

View Article and Find Full Text PDF

The healing of vascularized mammalian tissue injuries initiate with hemostasis and clotting as part of biological defense system leading to the formation of a fibrin clot in which activated platelets are trapped to quickly stop bleeding and destroy microbials. In order to harness the therapeutic potential of biomolecules secreted by platelets and stemmed from plasma, blood deconstruction has allowed to yield autologous platelet-and plasma-derived protein fibrin scaffold. The autologous growth factors and microparticles stemmed from platelets and plasma, interact with fibrin, extracellular matrix, and tissue cells in a combinatorial, synergistic, and multidirectional way on mechanisms governing tissue repair.

View Article and Find Full Text PDF
Article Synopsis
  • The ephrin transmembrane receptor family, particularly the EPHB2 tyrosine kinase, plays a critical role in platelet function, particularly in signaling mechanisms related to bleeding disorders.
  • A missense variant (p.R745C) was identified in two siblings from a consanguineous family with bleeding issues, highlighting a genetic link to their platelet function defects despite normal platelet counts.
  • The study shows that this EPHB2 variant impairs several aspects of platelet activation and signaling, particularly through glycoprotein VI (GPVI) pathways, underscoring its importance in platelet biology and potential implications for inherited platelet disorders.
View Article and Find Full Text PDF

Professor GVR Born, Gus to his friends, was one of the great pioneers of platelet research. My early memories of him have enabled me to look back at his early years in Oxford and London. A brilliant and generous man with always the time to discuss and advise he was instrumental in deciphering the principle stages of the aggregation of blood platelets by ADP, a path aided by his development and use of the platelet aggregometer.

View Article and Find Full Text PDF

Background: Genetic variants in the gene encoding calcium and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) represent a new inherited bleeding disorder linked to major defects of platelet aggregation and activation of αIIbβ3 integrin. They are of major interest as CalDAG-GEFI is receiving attention as a potential target for antiplatelet therapy for prevention and treatment of cardiovascular disorders including arterial thrombosis and atherosclerosis.

Objectives: To better understand the phenotypical and clinical profiles of patients with CalDAG-GEFI deficiency.

View Article and Find Full Text PDF

The number of genes involved in the identification of macrothrombocytopenia (MTP) is growing but the clinical consequences for the affected patients are not well determined. Here, we report the management of the bleeding risk for a patient with the newly reported and rare DIAPH1-related disease during surgery for infertility and then during her subsequent pregnancy. The R1213* DIAPH1 variant responsible for a mild bleeding syndrome in six families was considered a potential risk factor for our patient.

View Article and Find Full Text PDF

Patients with the inherited bleeding disorder Glanzmann thrombasthenia (GT) possess platelets that lack αIIbβ3 integrin and fail to aggregate, and have moderate to severe mucocutaneous bleeding. Many become refractory to platelet transfusions due to the formation of isoantibodies to αIIbβ3 with the rapid elimination of donor platelets and/or a block of function. Epitope characterization has shown isoantibodies to be polyclonal and to recognize different epitopes on the integrin with β3 a major site and αvβ3 on endothelial and vascular cells a newly recognized target.

View Article and Find Full Text PDF

Background: Studies on the inherited bleeding disorder, Glanzmann thrombasthenia (GT), have helped define the role of the αIIbβ3 integrin in platelet aggregation. Stable bent αIIbβ3 undergoes conformation changes on activation allowing fibrinogen binding and its taking an extended form. The αIIb genu assures the fulcrum of the bent state.

View Article and Find Full Text PDF

A novel heterozygous Leu718del shows loss of synchronization between the intracytoplasmic tail of β3 with that of αIIb.Decreased activation of αIIbβ3 accompanies enlarged platelets that contain giant granules and give a poor aggregation response.

View Article and Find Full Text PDF