Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins.
View Article and Find Full Text PDFFast photochemical oxidation of proteins (FPOP) has demonstrated the ability to inform on the higher order structure of proteins. Recent technological advances have extended FPOP to live cells (IC-FPOP) using multiple cell lines and (IV-FPOP) using . These innovations allow proteins to be studied in their native cellular environment.
View Article and Find Full Text PDFWithin the past decade protein footprinting in conjunction with mass spectrometry has become a powerful and versatile means to unravel the higher order structure of proteins. Footprinting-based approaches has demonstrated the capacity to inform on interaction sites and dynamic regions that participate in conformational changes. These findings when set in a biological perspective inform on protein folding/unfolding, protein-protein interactions, and protein-ligand interactions.
View Article and Find Full Text PDFTrapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex.
View Article and Find Full Text PDF