Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E.
View Article and Find Full Text PDFBiofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, foodborne bacterial pathogens, which many are poor biofilm formers, could potentially take advantage of this protective mechanism by interacting with other strong biofilm producers. The objective of this study was to determine the influence of bacteria native to fresh produce processing environments on the incorporation of Escherichia coli O157:H7 in biofilms.
View Article and Find Full Text PDFRepresentative food contact and nonfood contact surfaces in two mid-sized, fresh-cut processing facilities were sampled for microbiological analyses after routine daily sanitization. Mesophilic and psychrotrophic bacteria on the sampled surfaces were isolated by plating on nonselective bacterial media. Alternatively, bacteria were isolated after an incubation period that allowed the formation of heterogeneous biofilms on stainless steel beads.
View Article and Find Full Text PDFAutomated imaging systems offer the potential to inspect the quality and safety of fruits consumed by the public. One problem that has hindered adoption of automated technologies has been the inability to image the complete surface of an individual fruit. A particular problem is that both the stem and calyx are concave structures.
View Article and Find Full Text PDFWe recently developed a time-resolved multispectral laser-induced fluorescence (LIF) imaging system capable of tunable wavelengths in the visible region for sample excitation and nanosecond-scale characterizations of fluorescence responses (lifetime imaging). Time-dependent fluorescence decay characteristics and fluorescence lifetime imaging of apples artificially contaminated with a range of diluted cow feces were investigated at 670 and 685 nm emission bands obtained by 418, 530, and 630 nm excitations. The results demonstrated that a 670 nm emission with a 418 nm excitation provided the greatest difference in time-dependent fluorescence responses between the apples and feces-treated spots.
View Article and Find Full Text PDFEach chicken carcass intended for U.S. consumers is mandated to be inspected by Food Safety and Inspection Service (FSIS) inspectors for its wholesomeness at the processing plants.
View Article and Find Full Text PDFDetection of apples contaminated with feces is a public health concern. We found that time-resolved imaging of apples artificially contaminated with feces allowed optimization of timing parameters for detection. Dairy feces were applied to Red Delicious and Golden Delicious apples.
View Article and Find Full Text PDFFecal contamination of food products is a critical health issue. To test the feasibility of the use fluorescent techniques to detect fecal contamination, fluorescence excitation and emission characteristics of fecal matter from cows, deer, swine, chickens, and turkeys in the UV to far-red regions of the spectrum were evaluated. To allow the optimization of the detection of fecal contamination on animal carcasses and cut meats, emission-excitation spectra of the feces were compared with spectra for animal meats.
View Article and Find Full Text PDFAnimal feces are a suspected source of contamination of apples by disease-causing organisms such as Echerichia coli O157. Laser-induced fluorescence was used to detect different amounts of feces from dairy cows, deer, and a dairy pasture applied to Red Delicious apples. One day after application, detection for 1:2 and 1:20 dilutions was nearly 100%, and for 1:200 dilutions (<15 ng of dry matter) detection was >80%.
View Article and Find Full Text PDFA laser-induced fluorescence imaging system developed to capture multispectral fluorescence emission images simultaneously from a relatively large target object is described. With an expanded, 355-nm Nd:YAG laser as the excitation source, the system captures fluorescence emission images in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 678, and 730 nm, respectively, from a 30-cm-diameter target area in ambient light. Images of apples and of pork meat artificially contaminated with diluted animal feces have demonstrated the versatility of fluorescence imaging techniques for potential applications in food safety inspection.
View Article and Find Full Text PDF