Publications by authors named "Alan L Epstein"

Objective: Malignancies of the CNS are difficult to treat because the blood-brain barrier (BBB) prevents most therapeutics from reaching the intracranial lesions at sufficiently high concentrations. This also applies to chimeric antigen receptor (CAR) T cells, for which systemic delivery is inferior to direct intratumoral or intraventricular injection of the cells. The authors previously reported on a novel approach to safely and reversibly open the BBB of mice by applying intra-arterial (IA) injections of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol.

View Article and Find Full Text PDF

Objective: Immune checkpoint-inhibitory therapeutic antibodies have shown striking activity against several types of cancers but are less effective against brain-localized malignancies, in part due to the protective effect of the blood-brain barrier (BBB). The authors hypothesized that intraarterial (IA) delivery of a novel compound, NEO100, has the potential to safely and reversibly open the BBB to enable brain-targeted therapeutic activity of checkpoint-inhibitory antibodies.

Methods: Immunocompetent mice with syngeneic glioblastoma or melanoma cells implanted into their brains were subjected to a single IA injection of NEO100 to open their BBB.

View Article and Find Full Text PDF

Introduction: Germ cell tumors (GCTs) are the most common type of cancer in young men. These tumors usually originate from the testis, but they can occasionally develop from extragonadal sites probably due to primordial germ cells (PGCs) migration errors. Cisplatin-based chemotherapy is usually effective for male GCTs, but the risk of toxicity is high and new therapeutic strategies are needed.

View Article and Find Full Text PDF

We have previously shown that monoamine oxidase A (MAO A) mediates prostate cancer growth and metastasis. Further, MAO A/Pten double knockout (DKO) mice were generated and demonstrated that the deletion of MAO A delayed prostate tumor development in the Pten knockout mouse model of prostate adenocarcinoma. Here, we investigated its effect on immune cells in the tumor microenvironment in MAO A/Pten DKO mouse model.

View Article and Find Full Text PDF

Exosomes are cell-derived nanovesicles involved in regulating intercellular communications. In contrast to conventional nanomedicines, exosomes are characterized by unique advantages for therapeutic development. Despite their major successes in drug delivery, the full potential of exosomes for immunotherapy remains untapped.

View Article and Find Full Text PDF

Class-switched antinuclear autoantibodies produced by T follicular helper (TFH) cell-dependent germinal center (GC) B cell response play an essential pathogenic role in lupus nephritis (LN). The role of T follicular regulatory (TFR) cells, an effector subset of CD4Foxp3 T regulatory cells (Tregs), which are specialized in suppressing TFH-GC response and Ab production, remains elusive in LN. Contrasting reports have shown increased/reduced circulating TFR cells in human lupus that might not accurately reflect their presence in the GCs of relevant lymphoid organs.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are often the most abundant immune cells in the tumor microenvironment (TME). Strategies targeting TAMs to enable tumor cell killing through cellular phagocytosis have emerged as promising cancer immunotherapy. Although several phagocytosis checkpoints have been identified, the desired efficacy has not yet been achieved by blocking such checkpoints in preclinical models or clinical trials.

View Article and Find Full Text PDF

Resolving tumor-associated inflammation in the tumor microenvironment (TME) may promote antitumor effects. Lipoxin A4 (LXA4) is a short-lived endogenous bioactive lipid with potent anti-inflammatory and pro-resolving properties. Here, a biomimetic of LXA4, NAP1051, was shown to have LXA4-like properties and antitumor activity in colorectal cancer xenograft models.

View Article and Find Full Text PDF

Quantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgamma (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following Zr-oxine labeling.

View Article and Find Full Text PDF

Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer's, and Parkinson's disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood-brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1-0.

View Article and Find Full Text PDF

Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues.

View Article and Find Full Text PDF

This evaluation emphasizes the main points of the original article 'Position paper: new insights into the immunobiology and dynamics of tumor-host interactions require adaptations of clinical studies' by Sprenger et al. and provides further justification for the use of an alternative approach in the design of human clinical trials for new investigational drugs in the field of immuno-oncology. Standard trial design utilizing the double blind placebo trial approach, while effective for drugs that directly treat tumors, is too costly, slow, and not effective for drugs and protocols that depend on activation of the immune system for killing of tumors.

View Article and Find Full Text PDF

(1) Background: PTTG1 sustains the invasiveness of several cancer types. We previously reported that in seminomas, PTTG1 was detected in the peripheral area of the tumor and in the leading infiltrative edge. Here, we investigate the PTTG1 role on the invasive properties of seminoma.

View Article and Find Full Text PDF

Despite advancements in antibody-based therapies for non-Hodgkin lymphoma (NHL), at least two major therapeutic needs remain unmet: i) heterogenous activation of host immunity towards B cell NHL; and ii) lack of antibody-based therapeutics for T cell NHL. This study explores the molecular characteristics of an adaptable modality called antibody Nanoworms and demonstrates their receptor clustering activity as a means to overcome and address abovementioned needs. To test this, four selected therapeutic receptors of B cell (CD19, CD20, HLA-DR10) and T cell (CD3) NHL were targeted by Nanoworms.

View Article and Find Full Text PDF

Background: Intracarotid injection of mannitol has been applied for decades to support brain entry of therapeutics that otherwise do not effectively cross the blood-brain barrier (BBB). However, the elaborate and high-risk nature of this procedure has kept its use restricted to well-equipped medical centers. We are developing a more straightforward approach to safely open the BBB, based on the intra-arterial (IA) injection of NEO100, a highly purified version of the natural monoterpene perillyl alcohol.

View Article and Find Full Text PDF

The development of recombinant therapeutic proteins has been a major revolution in modern medicine. Therapeutic-based monoclonal antibodies (mAbs) are growing rapidly, providing a potential class of human pharmaceuticals that can improve the management of cancer, autoimmune diseases, and other conditions. Most mAbs are typically of the immunoglobulin G (IgG) subclass, and they are glycosylated at the conserved asparagine position 297 (Asn-297) in the CH2 domain of the Fc region.

View Article and Find Full Text PDF

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other ALCLs have not been fully elucidated and classification of BIA-ALCL as a WHO entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCLs to non-BIA-ALCLs and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase-9).

View Article and Find Full Text PDF

Purpose: The murine Lym-1 mAb targets a discontinuous epitope (Lym-1 epitope) on several subtypes of HLA-DR, which is upregulated in a majority of human B-cell lymphomas and leukemias. Unlike CD19, the Lym-1 epitope does not downregulate upon crosslinking, which may provide an advantage as a target for CAR T-cell therapy. Lym-1 CAR T cells with a conventional 4-1BB and CD3ζ (BB3z) signaling domain exhibited impaired expansion.

View Article and Find Full Text PDF

Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-displayed monoclonal antibodies, we have developed an exosome platform termed synthetic multivalent antibodies retargeted exosome (SMART-Exo) for controlling cellular immunity.

View Article and Find Full Text PDF

We investigated the association of LHR expression in epithelial ovarian cancer (OC) with clinical and pathologic characteristics of patients. LHR expression was examined immunohistochemically using tissue microarrays (TMAs) of specimens from 232 OC patients. Each sample was scored quantitatively evaluating LHR staining intensity (LHR-I) and percentage of LHR (LHR-P) staining cells in tumor cells examined.

View Article and Find Full Text PDF

Foxp3T regulatory cells (Tregs) control autoimmune response by suppressing proliferation and effector functions of self-reactive Foxp3CD4/CD8 T cells and thereby maintain the critical balance between self-tolerance and autoimmunity. Earlier, we had shown that OX40L-JAG1 cosignaling mediated through their cognate receptors OX40 and Notch3 preferentially expressed on murine Tregs can selectively induce their proliferation in the absence of TCR stimulation. However, the differential molecular mechanisms regulating TCR-independent versus TCR-dependent Treg proliferation and lineage stability of the expanded Tregs remained unknown.

View Article and Find Full Text PDF

Background: More than 700 women have developed an anaplastic large T cell lymphoma (ALCL) surrounding textured surface breast implants, termed breast implant-associated ALCL (BIA-ALCL). Most patients with BIA-ALCL present with an accumulation of fluid (delayed seroma) around the implant. However, benign seromas without malignant cells complicating scar contracture, implant rupture, trauma, infection, and other causes are more common.

View Article and Find Full Text PDF

Antibodies to brewer's yeast or anti-Saccharomyces cerevisiae antibodies (ASCA) have been detected in 70% of patients with Crohn's disease and have become a part of the evaluation of a patient for Crohn's disease. Prior evaluation of these antibodies in rheumatoid arthritis have been inconsistent. In an initial small study, the levels of antibodies were elevated but not statistically significant.

View Article and Find Full Text PDF

The identification and use of antibodies dominate the biologic, clinical diagnostic, and therapeutic landscapes. In particular, antibodies have become essential tools in a variety of protein analytical experiments and to study the disposition of biologic therapeutics. One emerging class of peptide biologics is known as the elastin-like polypeptides (ELPs), which are repetitive protein polymers inspired by human tropoelastin.

View Article and Find Full Text PDF