Publications by authors named "Alan K L Liu"

Article Synopsis
  • Astrocytes play crucial and underestimated roles in modulating neuronal circuits, particularly in the striatum, where they regulate dopamine transmission and interact closely with cholinergic interneurons (ChIs).
  • The study reveals that striatal astrocytes rapidly excite ChIs and influence dopamine release through nicotinic acetylcholine receptors, operating on very fast timescales.
  • A unique anatomical configuration is observed, where ChI somata are closely located to astrocyte somata, allowing for a dynamic interaction that regulates ChI excitability and extracellular calcium, thus impacting overall striatal circuit activity and dopamine signaling.
View Article and Find Full Text PDF

Different neurodegenerative conditions can have complex, overlapping clinical presentations that make accurate diagnosis during life very challenging. For this reason, confirmation of the clinical diagnosis still requires postmortem verification. This is particularly relevant for clinical trials of novel therapeutics where it is important to ascertain what disease- and/or pathology-modifying effects the therapeutics have had.

View Article and Find Full Text PDF

Alpha-synuclein (aSyn) is a pre-synaptic monomeric protein that can form aggregates in neurons in Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), and in oligodendrocytes in multiple system atrophy (MSA). Although aSyn in astrocytes has previously been described in PD, PDD and DLB, the biochemical properties and topographical distribution of astrocytic aSyn have not been studied in detail. Here, we present a systematic investigation of aSyn astrocytic pathology using an expanded antibody toolset covering the entire sequence and key post-translational modifications (PTMs) of aSyn in Lewy body disorders (LBDs) and in MSA.

View Article and Find Full Text PDF

Objective: Up to one-third of patients with Parkinson's disease (PD) experience visual hallucinations (VHs). Lewy bodies are sparse in the visual cortices and seem unlikely to explain the hallucinations. Some neuroimaging studies have found that perfusion is reduced in the occipital lobe in individuals with VHs.

View Article and Find Full Text PDF

The diagonal band of Broca (DBB) contains the second largest cholinergic cell group in the human brain, known as the nucleus of the vertical limb of the DBB (nvlDBB). It has major projections to the hippocampus, but it is often underinvestigated, partly due to its ill-defined anatomical boundaries and hence the difficulty of reliable sampling. In this chapter, we have reviewed the historical literature to reestablish the anatomy of the nvlDBB, distinguishing it from neighboring basal forebrain cholinergic nuclei.

View Article and Find Full Text PDF

Introduction: Benign prostatic hyperplasia (BPH) is common in the ageing male. Clinical manifestations like retention impact on a patient's quality of life. Alterations in androgen activity at the androgen receptor complex level in the prostate contribute to prostatic hyperplasia with the highest incidence occurring in males in their 70's.

View Article and Find Full Text PDF

Although the precise neuropathological substrates of cognitive decline in Parkinson's disease (PD) remain elusive, it has long been regarded that pathology in the CA2 hippocampal subfield is characteristic of Lewy body dementias, including dementia in PD (PDD). Early non-human primate tracer studies demonstrated connections from the nucleus of the vertical limb of the diagonal band of Broca (nvlDBB, Ch2) to the hippocampus. However, the relationship between Lewy pathology of the CA2 subfield and cholinergic fibres has not been explored.

View Article and Find Full Text PDF

In the original version of this Article, the concentration of boric acid buffer for the SDS clearing solution was given incorrectly as '1 M sodium borate' and should have read '0.2 M boric acid'. Also, the composition of PBST incorrectly read '1% Triton X-100 (vol/vol) and 0.

View Article and Find Full Text PDF

Modern clearing techniques for the three-dimensional (3D) visualisation of neural tissue microstructure have been very effective when used on rodent brain but very few studies have utilised them on human brain material, mainly due to the inherent difficulties in processing post-mortem tissue. Here we develop a tissue clearing solution, OPTIClear, optimised for fresh and archival human brain tissue, including formalin-fixed paraffin-embedded material. In light of practical challenges with immunostaining in tissue clearing, we adapt the use of cresyl violet for visualisation of neurons in cleared tissue, with the potential for 3D quantification in regions of interest.

View Article and Find Full Text PDF

Different neurodegenerative conditions can have complex, overlapping clinical presentations that make accurate diagnosis during life very challenging. For this reason, confirmation of the clinical diagnosis still requires postmortem verification. This is particularly relevant for clinical trials of novel therapeutics where it is important to ascertain what disease and/or pathology modifying effects the therapeutics have had.

View Article and Find Full Text PDF

Several pathologic conditions of the heart lead to cardiac structural remodelling. Given the high density and the opaque nature of the myocardium, deep three dimensional (3D) imaging is difficult to achieve and structural analysis of pathological myocardial structure is often limited to two dimensional images and of thin myocardial sections. Efficient methods to obtain optical clearing of the tissue for 3D visualisation are therefore needed.

View Article and Find Full Text PDF

Three-dimensional visualization of intact tissues is now being achieved by turning tissues transparent. CLARITY is a unique tissue clearing technique, which features the use of detergents to remove lipids from fixed tissues to achieve optical transparency. To preserve tissue integrity, an acrylamide-based hydrogel has been proposed to embed the tissue.

View Article and Find Full Text PDF

Introduction: Depletion of cholinergic neurons within the nucleus basalis of Meynert (nbM) is thought to contribute to the development of cognitive impairments in both Alzheimer's disease (AD) and Lewy body disorders (LBD). It has been reported that, in late stage AD, a network of fibres that contain the neuropeptide galanin displays significant hypertrophy and 'hyperinnervates' the surviving cholinergic neurons. Galanin is considered as a highly inducible neuroprotective factor and in AD this is assumed to be part of a protective tissue response.

View Article and Find Full Text PDF

It has been well established that neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer's disease (AD). Friedrich Lewy first observed his eponymous inclusion bodies in the nbM of postmortem brain tissue from patients with Parkinson's disease (PD) and cell loss in this area can be at least as extensive as that seen in AD. There has been confusion with regard to the terminology and exact localisation of the nbM within the human basal forebrain for decades due to the diffuse and broad structure of this "nucleus".

View Article and Find Full Text PDF