Publications by authors named "Alan Jasanoff"

The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.

View Article and Find Full Text PDF
Article Synopsis
  • This text discusses how recording and modulation of neuronal activity can help in studying brain function in various health conditions and diseases.
  • It highlights the use of advanced techniques, like optogenetics and chemical sensing, that enhance our understanding of brain chemistry and signaling in rodent models.
  • The study showcases innovative fiber technology that integrates multiple recording methods, which allows researchers to simultaneously monitor and stimulate brain activity while also delivering drugs or genes, particularly in investigating the mesolimbic reward pathway in mice.
View Article and Find Full Text PDF

Electrophysiological recordings from brain cells are performed routinely using implanted electrodes, but they traditionally require a wired connection to the outside of the brain. A completely passive, wireless device that does not require on-board power for active transmission but that still facilitates remote detection could open the door for mass-scale direct recording of action potentials and transform the way we acquire brain signals. We present a nanofabricated coil that forms a neuroelectromagnetic junction, yielding a highly enhanced magnetic field transduction of electrophysiology.

View Article and Find Full Text PDF

Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry.

View Article and Find Full Text PDF

Bioluminescent probes are widely used to monitor biomedically relevant processes and cellular targets in living animals. However, the absorption and scattering of visible light by tissue drastically limit the depth and resolution of the detection of luminescence. Here we show that bioluminescent sources can be detected with magnetic resonance imaging by leveraging the light-mediated activation of vascular cells expressing a photosensitive bacterial enzyme that causes the conversion of bioluminescent emission into local changes in haemodynamic contrast.

View Article and Find Full Text PDF

Direct detection of neural activity by functional magnetic resonance imaging (fMRI) has been a longstanding goal in neuroscience. A recent study argued that it is possible to detect neuroelectrical potentials using a specialized fMRI scanning approach the authors termed "direct imaging of neuronal activity" (DIANA). We implemented DIANA in anesthetized rats and measured responses to somatosensory stimulation, reproducing core findings of the original study.

View Article and Find Full Text PDF

The ability to monitor intracellular calcium concentrations using fluorescent probes has led to important insights into biological signaling processes at the cellular level. An important challenge is to relate such measurements to broader patterns of signaling across fields of view that are inaccessible to optical techniques. To meet this need, we synthesized molecular probes that couple calcium-binding moieties to lanthanide texaphyrins, resulting in complexes endowed with a diverse complement of magnetic and photophysical properties.

View Article and Find Full Text PDF

The concentrations of reactive oxygen species (ROS), e.g., HO, are often elevated in diseased tissue microenvironments.

View Article and Find Full Text PDF
Article Synopsis
  • SNIO-CBP is a special tiny iron particle that helps doctors see if someone has liver problems using a type of scan called MRI without using harmful chemicals.
  • It works faster and better than a similar product, showing clear results in just 15 minutes after being injected.
  • This new technology could help find liver diseases more safely and quickly, which is super important for helping patients get the right treatment.
View Article and Find Full Text PDF

Characterizing sources and targets of illumination in living tissue is challenging. Here we show that spatial distributions of light in tissue can be mapped by using magnetic resonance imaging (MRI) in the presence of photosensitive nanoparticle probes. Each probe consists of a reservoir of paramagnetic molecules enclosed by a liposomal membrane incorporating photosensitive lipids.

View Article and Find Full Text PDF

Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects.

View Article and Find Full Text PDF

The complex connectivity of the mammalian brain underlies its function, but understanding how interconnected brain regions interact in neural processing remains a formidable challenge. Here we address this problem by introducing a genetic probe that permits selective functional imaging of distributed neural populations defined by viral labeling techniques. The probe is an engineered enzyme that transduces cytosolic calcium dynamics of probe-expressing cells into localized hemodynamic responses that can be specifically visualized by functional magnetic resonance imaging.

View Article and Find Full Text PDF

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology.

View Article and Find Full Text PDF

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (T) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high T metal tungsten.

View Article and Find Full Text PDF

Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is the most widely applied technique for brain-wide measurement of neural function in humans and animals. In conventional functional MRI (fMRI), brain signaling is detected indirectly, via localized activity-dependent changes in regional blood flow, oxygenation, and volume, to which MRI contrast can be readily sensitized. Although such hemodynamic fMRI methods are powerful tools for analysis of brain activity, they lack specificity for the many molecules and cell types that play functionally distinct roles in neural processing.

View Article and Find Full Text PDF

Nitroxide-based organic-radical contrast agents (ORCAs) are promising as safe, next-generation magnetic resonance imaging (MRI) tools. Nevertheless, stimuli-responsive ORCAs that enable MRI monitoring of prodrug activation have not been reported; such systems could open new avenues for prodrug validation and image-guided drug delivery. Here, we introduce a novel "pro-ORCA" concept that addresses this challenge.

View Article and Find Full Text PDF

Detection of nitric oxide (NO) in biological systems is challenging due to both physicochemical properties of NO and limitations of current imaging modalities and probes. Magnetic resonance imaging (MRI) could be applied for studying NO in living tissue with high spatiotemporal resolution, but there is still a need for chemical agents that effectively sensitize MRI to biological NO production. To develop a suitable probe, we studied the interactions between NO and a library of manganese complexes with various oxidation states and molecular structures.

View Article and Find Full Text PDF

The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains.

View Article and Find Full Text PDF

The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli. Neuroscientists have tried to define the functions of dopamine in concise conceptual terms, but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied, the effects of dopamine on larger-scale neural activity profiles are less well-understood.

View Article and Find Full Text PDF

The complex etiology of neurodegeneration continues to stifle efforts to develop effective therapeutics. New agents elucidating key pathways causing neurodegeneration might serve to increase our understanding and potentially lead to improved treatments. Here, we demonstrate that a water-soluble manganese(II) texaphyrin (MMn) is a suitable magnetic resonance imaging (MRI) contrast agent for detecting larger amyloid beta constructs.

View Article and Find Full Text PDF

Targeted manipulations of neural activity are essential approaches in neuroscience and neurology, but monitoring such procedures in the living brain remains a significant challenge. Here we introduce a paramagnetic analog of the drug muscimol that enables targeted neural inactivation to be performed with feedback from magnetic resonance imaging. We validate pharmacological properties of the compound in vitro, and show that its distribution in vivo reliably predicts perturbations to brain activity.

View Article and Find Full Text PDF

Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for -weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry. Here we present an alternative molecular architecture for detecting neurotransmitters, using superparamagnetic iron oxide nanoparticles conjugated to tethered neurotransmitter analogs and engineered neurotransmitter binding proteins. Interactions between the nanoparticle conjugates result in clustering that is reversibly disrupted in the presence of neurotransmitter analytes, thus altering -weighted MRI signals.

View Article and Find Full Text PDF

The synthesis of functional poly(2-alkyl-2-oxazoline) (PAOx) copolymers with complex nanoarchitectures using a graft-through ring-opening metathesis polymerization (ROMP) approach is described. First, well-defined norbornene-terminated poly(2-ethyl-2-oxazoline) (PEtOx) macromonomers (MM) were prepared by cationic ringopening polymerization. ROMP of these MMs produced bottlebrush copolymers with PEtOx side chains.

View Article and Find Full Text PDF

Biological electromagnetic fields arise throughout all tissue depths and types, and correlate with physiological processes and signalling in organs of the body. Most of the methods for monitoring these fields are either highly invasive or spatially coarse. Here, we show that implantable active coil-based transducers that are detectable via magnetic resonance imaging enable the remote sensing of biological fields.

View Article and Find Full Text PDF