Publications by authors named "Alan J Townsend"

Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron release. We showed that NO-mediated iron efflux from cells required glutathione (GSH) (Watts, R. N.

View Article and Find Full Text PDF

4-Hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may be required for complete detoxification.

View Article and Find Full Text PDF

Naturally occurring nitroalkene fatty acids (NAs) derived from oleic (NO(2)-OA) and linoleic (NO(2)-LA) acids mediate a variety of cellular responses. We examined the signaling pathways involved in NA activation of Nrf2/ARE-dependent versus PPARγ/PPRE-dependent transcription in human MCF7 breast cancer cells. Additionally, we compared the relative potencies of NO(2)-OA and NO(2)-LA in activating these two transcriptional programs.

View Article and Find Full Text PDF

Curcumin exhibits anti-inflammatory and antitumor activity and is being tested in clinical trials as a chemopreventive agent for colon cancer. Curcumin's chemopreventive activity was tested in a transgenic mouse model of lung cancer that expresses the human Ki-ras(G12C) allele in a doxycycline (DOX) inducible and lung-specific manner. The effects of curcumin were compared with the lung tumor promoter, butylated hydroxytoluene (BHT), and the lung cancer chemopreventive agent, sulindac.

View Article and Find Full Text PDF

The naturally occurring nitroalkenes, nitrolinoleic (NO(2)-LA) and nitrooleic (NO(2)-OA) acids, are among the most potent endogenous ligand activators of PPARgamma-dependent transcription. In order to understand mechanisms that regulate cellular response to these nitroalkenes, we previously demonstrated that glutathione conjugation of NO(2)-LA and MRP1-mediated efflux of the conjugates were associated with significant attenuation of PPARgamma activation by this nitroalkene [(2006) Biochemistry 45, 7889-7896]. Here we show that NO(2)-OA activation of PPARgamma is similarly affected by nonenzymatic conjugation and MRP1-mediated efflux.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are activated by cytochrome P450 (CYP) isozymes, and a subset of the reactive metabolites generated is detoxified via conjugation with glutathione (GSH) by specific glutathione S-transferases (GSTs). We have used V79MZ cells stably transfected with either human or rat cytochrome P4501A1 (CYP1A1), alone or in combination with human GSTP1 (hGSTP1), to examine the dynamics of activation versus detoxification of benzo[a]pyrene (B[a]P), dibenzo[a,l]pyrene (DB[a,l]P), and their dihydrodiol metabolites. The cytotoxicity of B[a]P or DB[a,l]P was 9-11-fold greater in cells expressing human, as compared to rat CYP1A1, despite similar enzymatic activities.

View Article and Find Full Text PDF

The environmental carcinogen 5-methylchrysene (5MC) can be activated to mutagenic metabolites by several isozymes of cytochrome P-450 (CYP). The resulting reactive diol-epoxides can be detoxified via conjugation by glutathione S-transferases (GST). We investigated whether expression of human glutathione S-transferase P1 (hGSTP1) would differentially protect cells against the cytotoxicity or mutagenicity of 5MC or its 1,2-dihydrodiol intermediate (5MC-1,2-diol) in V79MZ cells with activation via stably transfected human CYP1B1 (hCYP1B1) as compared to activation by human CYP1A1 (hCYP1A1).

View Article and Find Full Text PDF

Cells expressing elevated levels of allelic variants of human glutathione S-transferase P1 (GSTP1) and/or efflux transporters, MRP1 or MRP2, were used to evaluate the role of GSTP1-1 in cisplatin resistance. These studies revealed that GSTP1-1 confers low-level resistance (1.4- to 1.

View Article and Find Full Text PDF

A major component of the anticarcinogenic activity of the dietary chemopreventive agent sulforaphane (SFN) is attributed to its ability to induce expression of phase II detoxification genes containing the antioxidant response element (ARE) within their promoters. Because SFN is a reactive electrophile--readily forming conjugates with glutathione (GSH)--we asked whether expression of glutathione S-transferase (GST) P1-1 and the GSH conjugate efflux pump, multidrug resistance or resistance-associated protein (MRP) 1, would significantly modify the cellular response to SFN exposure. This was investigated using GST- and MRP1-poor parental MCF7 cells and transgenic derivatives expressing GSTP1-1 and/or MRP1.

View Article and Find Full Text PDF

Transgenic cell lines were constructed to study the dynamics of competition between activation versus detoxification of benzo[a]pyrene (B[a]P) or B[a]P-7,8-dihydrodiol metabolites. Stably transfected V79MZ cells expressing human cytochrome P4501A1 (hCYP1A1) alone or in combination with human glutathione-S-transferase M1 (hGSTM1) were used to determine how effectively this GST isozyme protects against cytotoxic, genotoxic, and mutagenic effects of B[a]P or the enantiomeric dihydrodiol metabolites (+)-benzo[a]pyrene-7,8-dihydrodiol ((+)-B[a]P-7,8-diol) and (-)-benzo[a]pyrene-7,8-dihydrodiol ((-)-B[a]P-7,8-diol). Expression of hGSTM1 in the presence of hCYP1A1 conferred significant 8.

View Article and Find Full Text PDF

We have used V79MZ hamster lung fibroblasts stably transfected with human cytochrome P450-1A1 (hCYP1A1; cell line designated V79MZh1A1) or P450-1B1 (hCYP1B1; cell line designated V79MZh1B1) alone, or in combination with human glutathione-S-transferase (GST) alpha-1 (hGSTA1), in order to examine GST protection against cytotoxicity and mutagenicity of dibenzo[a,l]pyrene (DBP) and the intermediate dihydrodiol metabolite (+/-)-DBP-11,12-dihydrodiol (DBPD). At comparable expression levels of hCYP1A1 and hCYP1B1, both DBP and DBPD were more cytotoxic in V79MZ1A1 (IC(50)=2.7 and 0.

View Article and Find Full Text PDF

Transgenic cell lines were constructed to study dynamic competition between activation versus detoxification of benzo[a]pyrene (B[a]P) and its metabolites. Transfected V79MZ cells expressing human cytochrome P4501A1 (hCYP1A1) alone, or expressing hCYP1A1 in combination with human glutathione S-transferase P1 (hGSTP1), were used to determine how effectively GST protects against macromolecular damage or mutagenicity of B[a]P or its enantiomeric dihydrodiol metabolites (+)-benzo[a]pyrene-7,8-dihydrodiol [(+)B[a]P-7,8-diol] and (-)-benzo[a]pyrene-7,8-dihydrodiol [(-)-B[a]P-7,8-diol]. Mutagenicity of B[a]P at the hprt locus was dose- and time-dependent in cells that expressed hCYP1A1.

View Article and Find Full Text PDF

Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and the occurrence of tumors in different species, the mechanism of tumor induction by DCM metabolites produced through the GST pathway remains unclear.

View Article and Find Full Text PDF

GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTalpha, pi, mu, and theta isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses.

View Article and Find Full Text PDF

Based upon several previous reports, no consistent relationship between multidrug resistance protein 1 (MRP1, ABCC1) expression and cellular sensitivity to mitoxantrone (MX) toxicity can be ascertained; thus, the role of MRP1 in MX resistance remains controversial. The present study, using paired parental, MRP1-poor, and transduced MRP1-overexpressing MCF7 cells, unequivocally demonstrates that MRP1 confers resistance to MX cytotoxicity and that resistance is associated with reduced cellular accumulation of MX. This MRP1-associated reduced accumulation of MX was partially reversed by treatment of cells with 50 microM MK571 [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid]-an MRP inhibitor that increased MX accumulation in MRP1-expressing MCF7 cells but had no effect on MRP-poor MCF7 cells.

View Article and Find Full Text PDF

Drug-metabolizing enzymes and drug transporters are key determinants of the pharmacokinetics and pharmacodynamics of many antineoplastic agents. Metabolism and transport influence the cytotoxic effects of antineoplastic agents in target tumor cells and normal host tissues. This article summarizes several state-of-the-art approaches to enhancing the effectiveness and safety of cancer therapy based on recent developments in our understanding of antineoplastic drug metabolism and transport.

View Article and Find Full Text PDF

4-Nitroquinoline 1-oxide (NQO) is a reactive electrophile with potent cytotoxic as well as genotoxic activities. NQO forms a conjugate, QO-SG, with glutathione, which greatly reduces its chemical reactivity. Previous studies demonstrated that glutathione S-transferase (GST) P1a-1a and multidrug resistance protein (MRP) 1/2 act in synergy to confer resistance to both cyto- and genotoxicities of NQO, whereas protection afforded by GSTP1a-1a or MRP alone was much less.

View Article and Find Full Text PDF

15-Deoxy-Delta(12,14)prostaglandin J(2) (15-d-PGJ(2)), a terminal metabolite of the J-series cyclopentenone prostaglandins, influences a variety of cellular processes including gene expression, differentiation, growth, and apoptosis. As a ligand of peroxisomal proliferator-activated receptor gamma (PPAR gamma), 15-d-PGJ(2) can transactivate PPAR gamma-responsive promoters. Previously, we showed that multidrug resistance proteins MRP1 and MRP3 attenuate cytotoxic and transactivating activities of 15-d-PGJ(2) in MCF7 breast cancer cells.

View Article and Find Full Text PDF

Our previous studies have shown that the glutathione S-transferases (GSTs) can operate in synergy with the efflux transporter multidrug resistance protein 1 (MRP1, ABCC1) to confer resistance to the cyto- and genotoxicities of some anticancer drugs and carcinogens. The current study was designed to determine whether the alternative efflux transporter, MRP2 (ABCC2), can also potentiate GST-mediated detoxifications in HepG2 cells. HepG2 cells, which express high-level MRP2 but not MRP1, were stably transduced with GST expression vectors under tetracycline-repressible transcriptional control.

View Article and Find Full Text PDF

One of the most potent cyclopentenone prostaglandins, 15-deoxy-Delta(12,14)prostaglandin J(2) (15-d-PGJ(2)), has been shown to be cytotoxic in some tumor cells and, as a ligand of peroxisome proliferator activated receptor gamma (PPARgamma), to influence the transcriptional regulation of several genes. We examined whether a glutathione conjugate of 15-d-PGJ(2), 15-d-PGJ(2)-SG, is formed and if the glutathione conjugate efflux pumps, MRP1 and MRP3, could transport this conjugate, thereby attenuating the cytotoxicity and transactivating activity of 15-d-PGJ(2) in MCF7 breast cancer cells. Formation of 15-d-PGJ(2)-SG was demonstrated both in vitro and in cells, and its structure was determined by ESI/MS and NMR.

View Article and Find Full Text PDF

Aldehyde dehydrogenase 3A1 (ALDH3A1) is one of the most abundant proteins found in corneal epithelial cells of mammalian species, with several postulated protective roles that include detoxification of peroxidic aldehydes, scavenging of free radicals, and direct absorption of ultraviolet (UV) radiation. In the present study, the protective role of ALDH3A1 against UV- and 4-hydroxy-2-nonenal- (4-HNE-) induced oxidative damage was studied. For this purpose, human ALDH3A1 was stably transfected in a human corneal epithelial cell line (HCE) lacking endogenous enzyme.

View Article and Find Full Text PDF

Compounds that induce the synthesis of cytoprotective phase II enzymes have shown promise as cancer chemopreventive agents. Although chemically diverse, phase II enzyme inducers are capable of participating in Michael reaction chemistry. We have synthesized a novel class of organosulfur compounds, termed oxathiolene oxides (OTEOs).

View Article and Find Full Text PDF

Certain chemopreventive agents are thought to work in part via induction of GST expression. We have utilized transgenic cell lines to show that GST expression can protect against DNA alkylation, and in some cases cytotoxicity caused by electrophilic carcinogens conjugated by GSTs (e.g.

View Article and Find Full Text PDF