Publications by authors named "Alan J Hay"

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process.

View Article and Find Full Text PDF
Article Synopsis
  • The ISIRV and WHO held a joint virtual conference from October 19-21, 2021, primarily focusing on the global response to the SARS-CoV-2 pandemic but also addressing influenza and RSV treatment and prevention.
  • Key discussions included potential therapeutics for SARS-CoV-2, such as the JAK inhibitor baricitinib, IL-6R inhibitor tocilizumab, and various monoclonal antibodies targeting the virus's spike protein.
  • The conference also highlighted advancements in RSV treatments like the monoclonal antibody nirsevimab and an Ad26.RSV vaccine, as well as the expanded role of the WHO in global influenza surveillance and response during the pandemic.
View Article and Find Full Text PDF

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors.

View Article and Find Full Text PDF

In the centenary year of the devastating 1918-19 pandemic, it seems opportune to reflect on the success of the WHO Global Influenza Surveillance and Response System (GISRS) initiated 70 years ago to provide early warning of changes in influenza viruses circulating in the global population to help mitigate the consequences of such a pandemic and maintain the efficacy of seasonal influenza vaccines. Three pandemics later and in the face of pandemic threats from highly pathogenic zoonotic infections by different influenza A subtypes, it continues to represent a model platform for global collaboration and timely sharing of viruses, reagents and information to forestall and respond to public health emergencies.

View Article and Find Full Text PDF

Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity.

View Article and Find Full Text PDF

Objectives: The identification of antigenic variants and the selection of influenza viruses for vaccine production are based largely on antigenic characterisation of the haemagglutinin (HA) of circulating viruses using the haemagglutination inhibition (HI) assay. However, in addition to evolution related to escape from host immunity, variants emerging as a result of propagation in different cell substrates can complicate the interpretation of HI results. The objective was to develop further a micro-neutralisation (MN) assay to complement the HI assay in antigenic characterisation of influenza viruses to assess the emergence of new antigenic variants and reinforce the selection of vaccine viruses.

View Article and Find Full Text PDF

Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny.

View Article and Find Full Text PDF

As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway.

View Article and Find Full Text PDF

The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly.

View Article and Find Full Text PDF

Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes.

View Article and Find Full Text PDF

Four influenza pandemics have struck the human population during the last 100 years causing substantial morbidity and mortality. The pandemics were caused by the introduction of a new virus into the human population from an avian or swine host or through the mixing of virus segments from an animal host with a human virus to create a new reassortant subtype virus. Understanding which changes have contributed to the adaptation of the virus to the human host is essential in assessing the pandemic potential of current and future animal viruses.

View Article and Find Full Text PDF

Objective: To study the impact of avian influenza virus H5N1 neuraminidase mutations I117V, I314V and I117V + I314V on the sensibility of neuraminidase inhibitors (NAIs) and the activity of neuraminidase (NA).

Methods: The mutations were introduced into NA genes of virus strain A/Vietnam/1203/04 (H5N1) by site-directed mutagenesis. With the A/WSN/33 (H1N1) background, recombinant influenza viruses containing NA mutations were rescued by reverse genetics.

View Article and Find Full Text PDF

The natural reservoir of Influenza A is waterfowl. Normally, waterfowl viruses are not adapted to infect and spread in the human population. Sometimes, through reassortment or through whole host shift events, genetic material from waterfowl viruses is introduced into the human population causing worldwide pandemics.

View Article and Find Full Text PDF

Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts.

View Article and Find Full Text PDF

Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units.

View Article and Find Full Text PDF

Annual influenza epidemics in humans affect 5-15% of the population, causing an estimated half million deaths worldwide per year [Stohr K. Influenza-WHO cares. Lancet Infectious Diseases 2002;2(9):517].

View Article and Find Full Text PDF

With a Hunsdiecker-Barton iododecarboxylation strategy, we converted the carboxylate group of the oseltamivir precursor into exemplary phosphonate monoesters. In all cases, K(i) values towards influenza virus sialidase remained in the sub-nanomolar range. We have thus made valuable structural space available for the design of novel oseltamivir-based tools for influenza virus research.

View Article and Find Full Text PDF

A series of M2/NB chimeras were used to investigate the ion channel activity of the IAV M2 protein. Replacing the M2 cytoplasmic domain with the equivalent NB domain (AAB chimera) did not influence ion channel activity, while replacement of N-terminal domains (BAA and BAB chimeras) resulted in loss of activity. Extension of the M2 protein N-terminal domain resulted in full restoration of ion channel activity in BAA chimeras but only partial restoration in BAB.

View Article and Find Full Text PDF

The antiviral drug arbidol (ARB), which is licensed in Russia for use against influenza, is known to inhibit early membrane fusion events in influenza A and B virus replication. To investigate in more detail the target and mechanism of ARB action we generated and studied the characteristics of ARB-resistant influenza virus mutants. Observations of the ARB susceptibility of reassortants between A/Singapore/1/57(H2N2) and A/chicken/Germany/27(H7N7, "Weybridge" strain) and of mutants of the latter virus identified the virus haemagglutinin (HA) as the major determinant of ARB sensitivity.

View Article and Find Full Text PDF

The new 2-alkyl-2-aminoadamantanes and analogues 4-10 were designed and synthesized by simplification of the structure of the potent anti-influenza virus A spiranic aminoadamantane heterocycles 2 and 3. The aim of the present work was to examine the effects of bulky and extended lipophilic moieties attached to amantadine 1 on binding to the M2 channel and the resulting antiviral potency. The binding affinities of the compounds to the M2 protein of influenza virus A/chicken/Germany/27 (Weybridge strain; H7N7) were measured for the first time using an assay based on quenching of Trp-41 fluorescence by His-37 protonation, and their antiviral potencies were evaluated against the replication of influenza virus A H2N2 and H3N2 subtypes and influenza virus B in MDCK cells.

View Article and Find Full Text PDF

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection.

View Article and Find Full Text PDF

The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner.

View Article and Find Full Text PDF

Antigenic and genetic analysis of the hemagglutinin of approximately 13,000 human influenza A (H3N2) viruses from six continents during 2002-2007 revealed that there was continuous circulation in east and Southeast Asia (E-SE Asia) via a region-wide network of temporally overlapping epidemics and that epidemics in the temperate regions were seeded from this network each year. Seed strains generally first reached Oceania, North America, and Europe, and later South America. This evidence suggests that once A (H3N2) viruses leave E-SE Asia, they are unlikely to contribute to long-term viral evolution.

View Article and Find Full Text PDF