Publications by authors named "Alan J Benesi"

Cellulose nanowhiskers (CNWs) were used in conjunction with phage display technology to identify polypeptides which bind the crystalline region of cellulose. A consensus peptide WHWTYYW was identified to efficiently bind the CNWs. The binding affinities of specific phage particles were assessed using biopanning assays and enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

(2)H T(1) NMR relaxation was used to characterize the molecular motion of deuterated water ((2)H(2)O) in Aquivion E87-05, Nafion 117, and sulfonated-Radel proton-exchange membranes. The presence of bound water with solid character was confirmed by the dependence of the (2)H T(1) relaxation on the magnetic field of the spectrometer. By comparing the (2)H T(1) relaxation times of the different membranes that were equilibrated in varying humidities, the factors that influence the state of water in the membranes were identified.

View Article and Find Full Text PDF

Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC(50)s ranging from 0.

View Article and Find Full Text PDF

Exclusively heteronuclear (13)C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor (1)H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the (1)H resonances unassigned. Here we report two novel (13)C-detected NMR experiments which incorporate a (1)H chemical shift evolution period followed by (13)C-TOCSY mixing for aliphatic (1)H resonance assignment without reliance on (1)H detection.

View Article and Find Full Text PDF

Deuterium NMR relaxation experiments, low temperature deuterium NMR lineshape analysis, and FTIR spectra are consistent with a new model for solid state jump dynamics of water in (2)H(2)O-synthesized kanemite and (2)H(2)O-hydrated Na(+)-Zeolite A. Exchange occurs between two populations of water: one in which water molecules are directly coordinated to sodium ions and experience C(2) symmetry jumps of their OH bonds, and a population of interstitial water molecules outside the sodium ion coordination sphere that experience tetrahedral jumps of their OH bonds. For both samples the C(2) jump rate is much faster than the tetrahedral jump rate.

View Article and Find Full Text PDF

Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported.

View Article and Find Full Text PDF

2H NMR was used to study the nature of deuterated water in kanemite. Evidence is presented that shows that the water changes state from liquid to solid at room temperature during the hydration reaction that forms kanemite. The deuterium nuclei in the water experience rapid tetrahedral jumps in a hydrogen-bonded lattice like those observed in 2H2O ice.

View Article and Find Full Text PDF

Multivalent neoglycoconjugates are valuable tools for studying carbohydrate-protein interactions. To study the interaction of HIV-1 gp120 with its reported alternate glycolipid receptors, galactosyl ceramide (GalCer) and sulfatide, galactose- and sulfated galactose-derivatized dendrimers were synthesized, analyzed as ligands for rgp120 by surface plasmon resonance, and tested for their ability to inhibit HIV-1 infection of CXCR4- and CCR5-expressing indicator cells. Four different series of glycodendrimers were made by amine coupling spacer-arm derivatized galactose residues, either sulfated or nonsulfated, to poly(propylenimine) dendrimers, generations 1-5.

View Article and Find Full Text PDF