Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice.
View Article and Find Full Text PDFDietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days.
View Article and Find Full Text PDFHuman oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and CuO-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated.
View Article and Find Full Text PDFCurrent strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor alpha (PPARα).
View Article and Find Full Text PDFThe widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus assay, MN) in vitro, no study has systematically assessed the influence of medium composition on the physicochemical characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2 nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and influence on cell cycle in human lung epithelial cells using three different nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.
View Article and Find Full Text PDFEnviron Mol Mutagen
April 2011
Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide. Heterozygous mice of strain B6;129S7-Sod1(tm1Leb)/J were obtained from Jackson Laboratories and bred to produce offspring that were heterozygous (+/Sod1(tm1Leb)), homozygous wild-type (+/+), and homozygous knockout (Sod1(tm1Leb) /Sod1(tm1Leb)) for the Cu/Zn superoxide dismutase (Sod1) gene. Splenocytes from these mice were exposed to several concentrations of either sodium arsenite (As3 [0-200 μM]), monomethylarsonous acid (MMA3 [0-10 μM]), or dimethylarsinous acid (DMA3 [0-10 μM]) for 2 hr.
View Article and Find Full Text PDFUrinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay.
View Article and Find Full Text PDFDichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and the occurrence of tumors in different species, the mechanism of tumor induction by DCM metabolites produced through the GST pathway remains unclear.
View Article and Find Full Text PDF1,1-Dichloropropene (1,1-DCPe) is a contaminant of some source waters used to make drinking water. Because of this and the fact that no toxicological data were available for this compound, which is structurally similar to the rodent carcinogen 1,3-dichloropropene (1,3-DCPe), 1,1-DCPe was placed on the Contaminant Candidate List of the US Environmental Protection Agency. Consequently, we have performed a hazard characterization of 1,1-DCPe by evaluating its mutagenicity in the Salmonella assay and its DNA damaging (comet assay) and apoptotic (caspase assay) activities in human lymphoblastoid cells.
View Article and Find Full Text PDFArsenic is a prevalent human carcinogen whose mutagenicity has not been characterized fully. Exposure to either form of inorganic arsenic, As(III) or As(V), can result in the formation of at least four organic metabolites: monomethylarsonic acid, monomethylarsonous acid (MMA(III)), dimethylarsinic acid, and dimethylarsinous acid (DMA(III)). The methylated trivalent species, as well as some of the other species, have not been evaluated previously for the induction of chromosome aberrations, sister chromatid exchanges (SCE), or toxicity in cultured human peripheral blood lymphocytes; for mutagenicity in L5178Y/Tk(+/-) mouse lymphoma cells or in the Salmonella reversion assay; or for prophage-induction in Escherichia coli.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products.
View Article and Find Full Text PDF