The cleavage site of the Neurospora VS ribozyme is located in an internal loop in a hairpin called stem-loop I. Stem-loop I undergoes a cation-dependent structural change to adopt a conformation, termed shifted, that is required for activity. Using site-directed mutagenesis and kinetic analyses, we show here that the insertion of a single-stranded linker between stem-loop I and the rest of the ribozyme increases the observed self-cleavage rate constant by 2 orders of magnitude without affecting the Mg(2+) requirement of the reaction.
View Article and Find Full Text PDF