F-actin treadmilling plays a key part in cell locomotion. Because immunofluorescence showed colocalisation of thymosin beta4 (Tβ4) with cofilin-1 and Arp2/3 complex in lamellipodia, we analyzed combinations of these proteins on F-actin-adenosine triphosphate (ATP)-hydrolysis, which provides a measure of actin treadmilling. Actin depolymerising factor (ADF)/cofilin stimulated treadmilling, while Tβ4 decreased treadmilling, presumably by sequestering monomers.
View Article and Find Full Text PDFLamellipodial extension depends essentially on the polymerisation cycle of actin. In this cellular compartment the rate and extent of actin polymerisation is tightly regulated by a large number of actin-binding proteins. The main regulators comprise proteins of the actin-depolymerising factor (ADF)/cofilin family, which stimulate actin cycling, but there are also minor constituents like gelsolin and certain variants of tropomyosin that have so far not been considered to be lamellipodial constituents.
View Article and Find Full Text PDFThe binding sites for actin depolymerising factor (ADF) and cofilin on G-actin have been mapped by competitive chemical cross-linking using deoxyribonuclease I (DNase I), gelsolin segment 1 (G1), thymosin beta4 (Tbeta4), and vitamin D-binding protein (DbP). To reduce ADF/cofilin induced actin oligomerisation we used ADP-ribosylated actin. Both vitamin D-binding protein and thymosin beta4 inhibit binding by ADF or cofilin, while cofilin or ADF and DNase I bind simultaneously.
View Article and Find Full Text PDFThe general protein kinase inhibitor staurosporine (STS) has dual effects on human epidermoid cancer cells (A431) and normal rat kidney fibroblasts (NRK). It almost immediately stimulated increased lamellipodial activity of both cell lines and after 2 h induced typical signs of apoptosis, including cytoplasmic condensation, nuclear fragmentation, caspase-3 activation and DNA degradation. In the early phase we observed disruption of actin-containing stress fibres and accumulation of monomeric actin in the perinuclear region and cell nucleus.
View Article and Find Full Text PDFEtoposide inhibits topoisomerase II and induces apoptosis in human epidermoid cancer cells (A431) and normal rat fibroblasts (NRK) as verified by apoptotic morphology and chromatin degradation. Here we examine changes in the localisation of actin, cofilin and the Arp2/3 complex during the apoptotic process in response to etoposide. Twenty-four hours after etoposide addition, a large number of cells of both lines exhibited nuclear and cytoplasmic fragmentation with the formation of numerous blebs typical of apoptosis.
View Article and Find Full Text PDFHuman actin-depolymerizing factor (ADF) and cofilin are pH-sensitive, actin-depolymerizing proteins. Although 72% identical in sequence, ADF has a much higher depolymerizing activity than cofilin at pH 8. To understand this, we solved the structure of human cofilin using nuclear magnetic resonance and compared it with human ADF.
View Article and Find Full Text PDFStructural analysis of gelsolin domains 4-6 demonstrates that the two highest-affinity calcium ions that activate the molecule are in domains 5 and 6, one in each. An additional calcium site in domain 4 depends on subsequent actin binding and is seen only in the complex. The uncomplexed structure is primed to bind actin.
View Article and Find Full Text PDFTwinfilin is a ubiquitous and abundant actin monomer-binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K(D) = 0.
View Article and Find Full Text PDFPollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation.
View Article and Find Full Text PDF