Publications by authors named "Alan Freed"

Additive manufacturing (AM) enables production of components that are not possible to make using traditional methods. In particular, lattice-type structures are of recent interest due to their potential for high strength-to-weight ratios and other desirable properties. However, standard periodic lattice structures have problems conforming to complex curved and multi-connected shapes (e.

View Article and Find Full Text PDF

Uniaxial testing remains the most common modality of mechanical analysis for biological and other soft materials; however, biaxial testing enables a more comprehensive understanding of these materials' mechanical behavior. In recent years, a number of commercially available biaxial testing systems designed for biological materials have been produced; however, there are common limitations that are often associated with using these systems. For example, the range of allowable sample geometries are relatively constrained, the clamping systems are relatively limited with respect to allowable configurations, the load and displacement ranges are relatively small, and the software and control elements offer relatively limited options.

View Article and Find Full Text PDF

It is common practice to evaluate the mechanical performance of a scaffold for tissue engineering using concepts from linear elasticity theory (i.e. Young's modulus), or variations thereof, and uniaxial testing data.

View Article and Find Full Text PDF

The airways and parenchyma of lung experience large deformations during normal respiration. Spatially accurate predictions of airflow patterns and aerosol transport therefore require respiration to be modeled as a fluid-structure interaction problem. Such computational models in turn require constitutive models for the parencyhma that are both accurate and efficient.

View Article and Find Full Text PDF

A simple, isotropic, elastic constitutive model for the spongy tissue in lung is formulated from the theory of hypo-elasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted in the literature as indicating extensional anisotropy. In contrast, we show that this behavior arises naturally from an analysis of isotropic hypo-elastic invariants and is a result of non-linearity, not anisotropy.

View Article and Find Full Text PDF

In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization.

View Article and Find Full Text PDF

Background: Left ventricular (LV) torsional deformation, based in part on the helical myocardial fiber architecture, is an important component of LV systolic and diastolic performance. However, there is no comprehensive study describing its normal development during childhood and adult life.

Methods And Results: Forty-five normal subjects (25 children and 20 adults; aged 9 days to 49 years; divided into 5 groups: infants, children, adolescents, and young and middle-age adults) underwent assessment of LV torsion and untwisting rate by Doppler tissue imaging.

View Article and Find Full Text PDF

In this paper, we present the application of a semi-global inverse method for determining material parameters of biological tissues. The approach is based on the successive response surface method, and is illustrated by fitting constitutive parameters to two nonlinear anisotropic constitutive equations, one for aortic sinus and aortic wall, the other for aortic valve tissue. Material test data for the aortic sinus consisted of two independent orthogonal uniaxial tests.

View Article and Find Full Text PDF

Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction.

View Article and Find Full Text PDF

Background: Quasilinear viscoelasticity (QLV) theory has been widely and successfully used to describe the time-dependent response of connective tissues. Difficulties remain, however, particularly in material parameter estimation and sensitivities. In this study, we introduce a new alternative: the fractional order viscoelasticity (FOV) theory, which uses a fractional order integral to describe the relaxation response.

View Article and Find Full Text PDF

A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic.

View Article and Find Full Text PDF