Publications by authors named "Alan Diehl"

Deficit of oxygen and nutrients in the tumor microenvironment (TME) triggers abnormal angiogenesis that produces dysfunctional and leaky blood vessels, which fail to adequately perfuse tumor tissues. Resulting hypoxia, exacerbation of metabolic disturbances, and generation of an immunosuppressive TME undermine the efficacy of anticancer therapies. Use of carefully scheduled angiogenesis inhibitors has been suggested to overcome these problems and normalize the TME.

View Article and Find Full Text PDF

Unlabelled: Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress.

View Article and Find Full Text PDF

The alcohol metabolite acetaldehyde is a potent human carcinogen linked to esophageal squamous cell carcinoma (ESCC) initiation and development. Aldehyde dehydrogenase 2 (ALDH2) is the primary enzyme that detoxifies acetaldehyde in the mitochondria. Acetaldehyde accumulation causes genotoxic stress in cells expressing the dysfunctional ALDH2E487K dominant negative mutant protein linked to ALDH2*2, the single nucleotide polymorphism highly prevalent among East Asians.

View Article and Find Full Text PDF

Unlabelled: Cancer-associated fibroblasts (CAF) can promote tumor growth, metastasis, and therapeutic resistance in esophageal squamous cell carcinoma (ESCC), but the mechanisms of action remain elusive. Our objective was to identify secreted factor(s) that mediate the communication between CAFs and ESCC tumor cells with the aim of identifying potential druggable targets. Through unbiased cytokine arrays, we have identified CC motif chemokine ligand 5 (CCL5) as a secreted factor that is increased upon co-culture of ESCC cells and CAFs, which we replicated in esophageal adenocarcinoma (EAC) with CAFs.

View Article and Find Full Text PDF

Lung squamous cell carcinoma (LUSC) represents a major subtype of lung cancer with limited treatment options. KMT2D is one of the most frequently mutated genes in LUSC (>20%), and yet its role in LUSC oncogenesis remains unknown. Here, we identify KMT2D as a key regulator of LUSC tumorigenesis wherein Kmt2d deletion transforms lung basal cell organoids to LUSC.

View Article and Find Full Text PDF
Article Synopsis
  • Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK) is an RNA binding protein involved in various cellular processes and its abnormal presence in the cytoplasm of tumors is linked to poor outcomes.
  • The SCF E3 ubiquitin ligase plays a crucial role by regulating hnRNPK through a process called K63 polyubiquitylation, which limits its ability to interact with target mRNAs crucial for cell behavior.
  • The study identifies that loss of SCF leads to increased cell movement and tumor growth, particularly through the upregulation of c-Myc, indicating potential therapeutic targets for cancers with dysregulated hnRNPK and c-Myc.
View Article and Find Full Text PDF
Article Synopsis
  • * Tumor-derived factors (TDFs) were found to stimulate this trogocytosis, negatively affecting the CTLs' ability to kill tumor cells by altering their lipid profiles and decreasing levels of a protective molecule called 25-hydroxycholesterol (25HC).
  • * The study showed that TDFs increase the activity of the transcription factor ATF3, which reduces the gene responsible for producing 25HC, thereby diminishing anti-tumor immunity and
View Article and Find Full Text PDF

Immune suppressive factors of the tumor microenvironment (TME) undermine viability and exhaust the activities of the intratumoral cytotoxic CD8 + T lymphocytes (CTL) thereby evading anti-tumor immunity and decreasing the benefits of immune therapies. To counteract this suppression and improve the efficacy of therapeutic regimens, it is important to identify and understand the critical regulators within CD8 + T cells that respond to TME stress and tumor-derived factors. Here we investigated the regulation and importance of activating transcription factor-4 (ATF4) in CTL using a novel Atf4 mouse model lacking ATF4 specifically in CD8 + cells.

View Article and Find Full Text PDF

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours.

View Article and Find Full Text PDF
Article Synopsis
  • Evasion of tumor immunity and resistance to treatments in solid tumors is supported by an immunosuppressive tumor microenvironment (TME), characterized by factors like regulatory T cells and adenosine.
  • The study identified that these TME factors downregulate the IFNAR1 receptor on CD8 cytotoxic T lymphocytes (CTLs) through the action of PARP11, which is increased in CTLs within tumors.
  • Inhibition of PARP11 not only maintains IFNAR1 levels but also boosts CTL activity against tumors, enhancing the effectiveness of chimeric antigen receptor (CAR) T cell therapies.
View Article and Find Full Text PDF

Overexpression of c-myc via increased transcription or decreased protein degradation is common to many cancer etiologies. c-myc protein degradation is mediated by ubiquitin-dependent degradation, and this ubiquitylation is regulated by several E3 ligases. The primary regulator is Fbxw7, which binds to a phospho-degron within c-myc.

View Article and Find Full Text PDF

Unlabelled: Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited.

View Article and Find Full Text PDF

Cyclin D1 is a regulatory subunit of -Cyclin Dependent Kinases 4 and 6 (CDK4/6) and regulates progression from G1 to S phase of the cell cycle. Dysregulated cyclin D1-CDK4/6 contributes to abnormal cell proliferation and tumor development. Phosphorylation of threonine 286 of cyclin D1 is necessary for ubiquitin-dependent degradation.

View Article and Find Full Text PDF

Background: Alcohol (ethanol) consumption is a major risk factor for head and neck and esophageal squamous cell carcinomas (SCCs). However, how ethanol (EtOH) affects SCC homeostasis is incompletely understood.

Methods: We utilized three-dimensional (3D) organoids and xenograft tumor transplantation models to investigate how EtOH exposure influences intratumoral SCC cell populations including putative cancer stem cells defined by high CD44 expression (CD44H cells).

View Article and Find Full Text PDF

Primary tumor-derived factors (TDFs) act upon normal cells to generate a pre-metastatic niche, which promotes colonization of target organs by disseminated malignant cells. Here we report that TDFs-induced activation of the p38α kinase in lung fibroblasts plays a critical role in the formation of a pre-metastatic niche in the lungs and subsequent pulmonary metastases. Activation of p38α led to inactivation of type I interferon signaling and stimulation of expression of fibroblast activation protein (FAP).

View Article and Find Full Text PDF

Intercellular biomolecule transfer (ICBT) between malignant and benign cells is a major driver of tumor growth, resistance to anticancer therapies, and therapy-triggered metastatic disease. Here we characterized cholesterol 25-hydroxylase (CH25H) as a key genetic suppressor of ICBT between malignant and endothelial cells (ECs) and of ICBT-driven angiopoietin-2-dependent activation of ECs, stimulation of intratumoral angiogenesis, and tumor growth. Human CH25H was downregulated in the ECs from patients with colorectal cancer and the low levels of stromal CH25H were associated with a poor disease outcome.

View Article and Find Full Text PDF

The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor.

View Article and Find Full Text PDF

Objective: Oesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. (homologous to in mice) is a common hot spot mutation. How metastasis is regulated by p53 in ESCC remains to be investigated.

View Article and Find Full Text PDF

Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions.

View Article and Find Full Text PDF

Overexpression of D-type cyclins in human cancer frequently occurs as a result of protein stabilization, emphasizing the importance of identification of the machinery that regulates their ubiqutin-dependent degradation. Cyclin D3 is overexpressed in ~50% of Burkitt's lymphoma correlating with a mutation of Thr-283. However, the E3 ligase that regulates phosphorylated cyclin D3 and whether a stabilized, phosphorylation deficient mutant of cyclin D3, has oncogenic activity are undefined.

View Article and Find Full Text PDF

Esophageal cancers comprise adenocarcinoma and squamous cell carcinoma, two distinct histologic subtypes. Both are difficult to treat and among the deadliest human malignancies. We describe protocols to initiate, grow, passage, and characterize patient-derived organoids (PDO) of esophageal cancers, as well as squamous cell carcinomas of oral/head-and-neck and anal origin.

View Article and Find Full Text PDF

Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner.

View Article and Find Full Text PDF

D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression.

View Article and Find Full Text PDF