Climate change can alter wetland extent and function, but such impacts are perplexing. Here, changes in wetland characteristics over North America from 25° to 53° North are projected under two climate scenarios using a state-of-the-science Earth system model. At the continental scale, annual wetland area decreases by ~10% (6%-14%) under the high emission scenario, but spatiotemporal changes vary, reaching up to ±50%.
View Article and Find Full Text PDFThe ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low-tech and cost-effective means for removing CO from the atmosphere while also delivering co-benefits to people and ecosystems.
View Article and Find Full Text PDFThe effectiveness of land-based climate mitigation strategies is generally estimated on a case-by-case basis without considering interactions with other strategies or influencing factors. Here we evaluate a new, comprehensive approach that incorporates interactions among multiple management strategies, land use/cover change, wildfire, and climate, although the potential effects of climate change are not evaluated in this study. The California natural and working lands carbon and greenhouse gas model (CALAND) indicates that summing individual practice estimates of greenhouse gas impacts may underestimate emission reduction benefits in comparison with an integrated estimate.
View Article and Find Full Text PDFAgricultural crop yields are susceptible to changes in future temperature, precipitation, and other Earth system factors. Future changes to these physical Earth system attributes and their effects on agricultural crop yields are highly uncertain. United States agricultural producers will be affected by such changes whether they occur domestically or internationally through international commodity markets.
View Article and Find Full Text PDFOld-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling.
View Article and Find Full Text PDFAir pollution affects large areas of forest, and field assessment of these effects is a costly, site-specific process. This paper establishes a biochemical basis for identifying ozone-damaged pine trees to facilitate efficient remote sensing assessment of air pollution damage. Several thousand live needles were collected from ponderosa pine (Pinus ponderosa) and Jeffrey pine (P.
View Article and Find Full Text PDF