Phosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635-541 Ma).
View Article and Find Full Text PDFThe rise of complex macroscopic life occurred during the Ediacaran Period, an interval that witnessed large-scale disturbances to biogeochemical systems. The current Ediacaran chronostratigraphic framework is of insufficient resolution to provide robust global correlation schemes or test hypotheses for the role of biogeochemical cycling in the evolution of complex life. Here, we present new radio-isotopic dates from Ediacaran strata that directly constrain key fossil assemblages and large-magnitude carbon cycle perturbations.
View Article and Find Full Text PDFThe extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time.
View Article and Find Full Text PDFThe rise of animals occurred during an interval of Earth history that witnessed dynamic marine redox conditions, potentially rapid plate motions, and uniquely large perturbations to global biogeochemical cycles. The largest of these perturbations, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for Ediacaran environmental change, possibly linked with evolutionary innovation or extinction. However, there are a number of controversies surrounding the Shuram, including its timing, duration, and role in the concomitant biological and biogeochemical upheavals.
View Article and Find Full Text PDFGeochronology is essential for understanding Earth's history. The availability of precise and accurate isotopic data is increasing; hence it is crucial to develop transparent and accessible data reduction techniques and tools to transform raw mass spectrometry data into robust chronological data. Here we present a Monte Carlo sampling approach to fully propagate uncertainties from linear regressions for isochron dating.
View Article and Find Full Text PDFThe biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift.
View Article and Find Full Text PDFBiomineralization marks one of the most significant evolutionary milestones among the Eukarya, but its roots in the fossil record remain obscure. We report crystallographic and geochemical evidence for controlled eukaryotic biomineralization in Neoproterozoic scale microfossils from the Fifteenmile Group of Yukon, Canada. High-resolution transmission electron microscopy reveals that the microfossils are constructed of a hierarchically organized interwoven network of fibrous hydroxyapatite crystals each elongated along the [001] direction, indicating biological control over microstructural crystallization.
View Article and Find Full Text PDFAfter nearly a billion years with no evidence for glaciation, ice advanced to equatorial latitudes at least twice between 717 and 635 Mya. Although the initiation mechanism of these Neoproterozoic Snowball Earth events has remained a mystery, the broad synchronicity of rifting of the supercontinent Rodinia, the emplacement of large igneous provinces at low latitude, and the onset of the Sturtian glaciation has suggested a tectonic forcing. We present unique Re-Os geochronology and high-resolution Os and Sr isotope profiles bracketing Sturtian-age glacial deposits of the Rapitan Group in northwest Canada.
View Article and Find Full Text PDF