Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays.
View Article and Find Full Text PDFWe show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [(14)C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor.
View Article and Find Full Text PDFTrehalose (alpha,alpha-1,1-glucosyl-glucose) is essential for the growth of mycobacteria, and these organisms have three different pathways that can produce trehalose. One pathway involves the enzyme described in the present study, trehalose synthase (TreS), which interconverts trehalose and maltose. We show that TreS from Mycobacterium smegmatis, as well as recombinant TreS produced in Escherichia coli, has amylase activity in addition to the maltose <--> trehalose interconverting activity (referred to as MTase).
View Article and Find Full Text PDFTrehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose.
View Article and Find Full Text PDFTrehalose synthase (TreS) catalyzes the reversible interconversion of trehalose (glucosyl-alpha,alpha-1,1-glucose) and maltose (glucosyl-alpha1-4-glucose). TreS was purified from the cytosol of Mycobacterium smegmatis to give a single protein band on SDS gels with a molecular mass of approximately 68 kDa. However, active enzyme exhibited a molecular mass of approximately 390 kDa by gel filtration suggesting that TreS is a hexamer of six identical subunits.
View Article and Find Full Text PDFTwo open reading frames in the Mycobacterium tuberculosis genome, Rv3372 and Rv2006, have about 25% sequence identity at the amino acid level to the trehalose-phosphate phosphatase (TPP) purified from Mycobacterium smegmatis. However, the protein produced from the cloned Rv3372 gene has a molecular weight of about 45kDa whereas the trehalose-P phosphatase purified from M. smegmatis has a molecular weight of about 27kDa.
View Article and Find Full Text PDFIn the cerebellar vermis of schizophrenic patients, our previous studies have revealed alterations in the mitogen-activated protein (MAP) kinase signaling cascade and downstream transcription factors within the c-fos promoter. Since the proteins of the Fos and Jun families of immediate-early genes dimerize to form activating protein (AP)-1, the present study was conducted to examine the expression of Jun transcription factors in schizophrenic and control subjects. Using Western blot analysis, we determined the protein levels of c-Jun, Jun B, and Jun D as well as the levels of c-jun mRNA by relative RT-PCR in post-mortem samples from cerebellar vermis.
View Article and Find Full Text PDFTrehalose is a nonreducing disaccharide in which the two glucose units are linked in an alpha,alpha-1,1-glycosidic linkage. This sugar is present in a wide variety of organisms, including bacteria, yeast, fungi, insects, invertebrates, and lower and higher plants, where it may serve as a source of energy and carbon. In yeast and plants, it may also serve as a signaling molecule to direct or control certain metabolic pathways or even to affect growth.
View Article and Find Full Text PDFThe trehalose-phosphate phosphatase (TPP) was purified from the cytosol of Mycobacterium smegmatis to near homogeneity using a variety of conventional steps to achieve a purification of about 1600-fold with a yield of active enzyme of about 1%. Based on gel filtration, the active enzyme had a molecular weight of about 27,000, and the most purified fraction also gave a major band on SDS-PAGE corresponding to a molecular weight of about 27,000. A number of peptides from the 27-kDa protein were sequenced and these sequences showed considerable homology to the trehalose-P phosphatase (otsB) of Escherichia coli.
View Article and Find Full Text PDFA series of trehalose-based oligosaccharides were isolated from the cytoplasmic fraction of Mycobacterium smegmatis and purified by gel-filtration and paper chromatography and TLC. Their structures were determined by HPLC and GLC to determine sugar composition and ratios, MALDI-TOF MS to measure molecular mass, methylation analysis to determine linkages, (1)H-NMR to obtain anomeric configurations of glycosidic linkages, and exoglycosidase digestions followed by TLC to determine sequences and anomeric configurations of the monosaccharides. Six different oligosaccharides were identified all with trehalose as the basic structure and additional glucose or galactose residues attached in various linkages.
View Article and Find Full Text PDFArch Biochem Biophys
February 2002
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose.
View Article and Find Full Text PDF