In recent years it has been shown that first order recurrent neural networks trained by gradient-descent can learn not only regular but also simple context-free and context-sensitive languages. However, the success rate was generally low and severe instability issues were encountered. The present study examines the hypothesis that a combination of evolutionary hill climbing with incremental learning and a well-balanced training set enables first order recurrent networks to reliably learn context-free and mildly context-sensitive languages.
View Article and Find Full Text PDF