Publications by authors named "Alan Cowman"

Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.

View Article and Find Full Text PDF
Article Synopsis
  • Drug resistance is making existing antimalarials ineffective, highlighting the urgent need for new treatments.
  • Researchers identified a promising new chemotype, cyclopropyl carboxamide, through screening a library of compounds, leading to the development of a strong candidate, WJM280, which is effective against malaria without harming human cells.
  • Further studies revealed that resistant parasites have mutations in the cytochrome b gene, confirming it as the drug target, but improving the compound's stability and effectiveness in mouse models still needs to be addressed.
View Article and Find Full Text PDF

The emergence of resistance against current antimalarial treatments has necessitated the need for the development of novel antimalarial chemotypes. Toward this goal, we recently optimised the antimalarial activity of the dihydroquinazolinone scaffold and showed it targeted PfATP4. Here, we deconstruct the lactam moiety of the tricyclic dihydroquinazolinone scaffold and investigate the structure-activity relationship of the truncated scaffold.

View Article and Find Full Text PDF

To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability.

View Article and Find Full Text PDF

Emerging resistance to current antimalarials is reducing their effectiveness and therefore there is a need to develop new antimalarial therapies. Toward this goal, high throughput screens against the P. falciparum asexual parasite identified the pyrazolopyridine 4-carboxamide scaffold.

View Article and Find Full Text PDF

causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during liver infection remains unexplored. Here, we use the FlpL/ system to conditionally excise genes in sporozoites for functional liver-stage studies.

View Article and Find Full Text PDF

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1).

View Article and Find Full Text PDF

Malaria is a devastating disease that causes significant morbidity worldwide. The development of new antimalarial chemotypes is urgently needed because of the emergence of resistance to frontline therapies. Independent phenotypic screening campaigns against the Plasmodium asexual parasite, including our own, identified the aryl amino acetamide hit scaffold.

View Article and Find Full Text PDF

Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern.

View Article and Find Full Text PDF

Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5.

View Article and Find Full Text PDF

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the asexual parasite and identified the 7--substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency.

View Article and Find Full Text PDF

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials.

View Article and Find Full Text PDF
Article Synopsis
  • RH5 is a promising vaccine candidate against Plasmodium falciparum, showing some effectiveness in reducing parasite growth during human trials, especially when combined with Ripr and CyRPA.
  • Researchers tested various combinations of these proteins in mice and rats to determine the best immune response and found that the DPX® adjuvant significantly enhanced the production of protective antibodies.
  • While combining RH5 with other antigens showed potential, it may not provide better immunity than using RH5 alone, suggesting that future vaccines could explore different antigen combinations.
View Article and Find Full Text PDF

Transmission blocking interventions can stop malaria parasite transmission from mosquito to human by inhibiting parasite infection in mosquitos. One of the most advanced candidates for a malaria transmission blocking vaccine is Pfs230. Pfs230 is the largest member of the 6-cysteine protein family with 14 consecutive 6-cysteine domains and is expressed on the surface of gametocytes and gametes.

View Article and Find Full Text PDF
Article Synopsis
  • The most severe malaria is caused by Plasmodium falciparum, which invades red blood cells using a specific complex that involves a protein called PfRh5 and its interacting partners.
  • Researchers discovered a new complex made of PfPTRAMP and PfCSS that aids in this invasion process, demonstrating its critical role using advanced microscopy and genetic techniques.
  • The study reveals the structure of the complex and identifies key targets for vaccine development, aiming to create effective strategies to combat malaria during its blood stage.
View Article and Find Full Text PDF

Drug resistance to first-line antimalarials-including artemisinin-is increasing, resulting in a critical need for the discovery of new agents with novel mechanisms of action. In collaboration with the Walter and Eliza Hall Institute and with funding from the Wellcome Trust, a phenotypic screen of Merck's aspartyl protease inhibitor library identified a series of plasmepsin X (PMX) hits that were more potent than chloroquine. Inspired by a PMX homology model, efforts to optimize the potency resulted in the discovery of leads that, in addition to potently inhibiting PMX, also inhibit another essential aspartic protease, plasmepsin IX (PMIX).

View Article and Find Full Text PDF

Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life () to be developed.

View Article and Find Full Text PDF

Plasmepsin X (PMX) is an aspartyl protease that processes proteins essential for Plasmodium parasites to invade and egress from host erythrocytes during the symptomatic asexual stage of malaria. PMX substrates possess a conserved cleavage region denoted by the consensus motif, SFhE (h=hydrophobic amino acid). Peptidomimetics reflecting the P -P positions of the consensus motif were designed and showed potent and selective inhibition of PMX.

View Article and Find Full Text PDF
Article Synopsis
  • Asymptomatic infections of P. falciparum malaria in adults may hinder clinical immunity rather than support it, serving as a reservoir for the parasite and aiding its transmission.
  • Researchers used a systems approach involving antibody responses and cell profiling to study the immune responses in individuals with symptomatic and asymptomatic malaria, linking certain immune cell profiles to a lower risk of clinical malaria.
  • Findings indicate that while some immune responses exist, asymptomatic infections also promote immunosuppressive mechanisms that could undermine effective immune control and vaccine responsiveness against malaria.
View Article and Find Full Text PDF
Article Synopsis
  • PMIX and PMX are important proteases in Plasmodium spp. that facilitate essential processes like egress and invasion in their lifecycle.
  • WM4 and WM382 are inhibitors of these proteases, with WM4 specifically targeting PMX and WM382 acting on both PMIX and PMX.
  • Research into the binding interactions and substrate specificity of these inhibitors helps clarify their mechanism, providing insights that could aid in developing new treatments.
View Article and Find Full Text PDF

Infection with Plasmodium falciparum parasites results in approximately 627,000 deaths from malaria annually. Key to the parasite's success is their ability to invade and subsequently grow within human erythrocytes. Parasite proteins involved in parasite invasion and proliferation are therefore intrinsically of great interest, as targeting these proteins could provide novel means of therapeutic intervention.

View Article and Find Full Text PDF

RhopH complexes consists of Clag3, RhopH2 and RhopH3 and are essential for growth of Plasmodium falciparum inside infected erythrocytes. Proteins are released from rhoptry organelles during merozoite invasion and trafficked to the surface of infected erythrocytes and enable uptake of nutrients. RhopH3, unlike other RhopH proteins, is required for parasite invasion, suggesting some cellular processes RhopH proteins function as single players rather than a complex.

View Article and Find Full Text PDF

Background: There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface.

View Article and Find Full Text PDF

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class.

View Article and Find Full Text PDF