Publications by authors named "Alan Cannell"

Paleozoic skies were ruled by extinct odonatopteran insects called "griffenflies," some with wingspans 3 times that of the largest extant dragonflies and 10 times that of common extant dragonflies. Previous studies suggested that flight was possible for larger fliers because of higher atmospheric oxygen levels, which would have increased air density. We use actuator disk theory to evaluate this hypothesis.

View Article and Find Full Text PDF

The evolutionary transition to powered flight remains controversial in bats, the only flying mammals. We applied aerodynamic modeling to reconstruct flight in the oldest complete fossil bat, the archaic Onychonycteris finneyi from the early Eocene of North America. Results indicate that Onychonycteris was capable of both gliding and powered flight either in a standard normodense aerial medium or in the hyperdense atmosphere that we estimate for the Eocene from two independent palaeogeochemical proxies.

View Article and Find Full Text PDF

An engineering examination of allometric and analogical data on the flight of giant Permian insects (Protodonata, or griffinflies) indicates that previous estimates of the body mass of these insects are too low and that the largest of these insects (wingspan of 70 cm or more) would have had a mass of 100-150 g, several times greater than previously thought. Here, the power needed to generate lift and fly at the speeds typical of modern large dragonflies is examined together with the metabolic rate and subsequent heat generated by the thoracic muscles. This evaluation agrees with previous work suggesting that the larger specimens would rapidly overheat in the high ambient temperatures assumed in the Permian.

View Article and Find Full Text PDF