Introduction: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormalities on CXRs, which may expand diagnostic support to a wider field of health professionals. There is a paucity of evidence on the impact of AI algorithms in assisting healthcare professionals (other than radiologists) who regularly review CXR images in their daily practice.
View Article and Find Full Text PDFBackground: Lymphatic leaks are associated with significant mortality and morbidity. Intranodal lymphangiography (ILAG) involves the direct injection of ethiodised lipid into the hilum of lymph nodes. It is diagnostic procedure that can have therapeutic effects secondary to a local sclerosant effect.
View Article and Find Full Text PDFIntroduction: A non-contrast CT head scan (NCCTH) is the most common cross-sectional imaging investigation requested in the emergency department. Advances in computer vision have led to development of several artificial intelligence (AI) tools to detect abnormalities on NCCTH. These tools are intended to provide clinical decision support for clinicians, rather than stand-alone diagnostic devices.
View Article and Find Full Text PDFThe posterior tibial tendon is a gliding tendon which courses around the medial malleolus and fails in posterior tibialis tendon dysfunction (PTTD) leading to a flat foot deformity. Distal tibial bone spurs have been identified as a secondary sign of PTTD although they have not been quantified in detail. The aim of this study was to assess the association of tendon dysfunction with the bony morphology of the tibial retro-malleolar groove.
View Article and Find Full Text PDFObjectives: To quantify reader agreement for the British Society of Thoracic Imaging (BSTI) diagnostic and severity classification for COVID-19 on chest radiographs (CXR), in particular agreement for an indeterminate CXR that could instigate CT imaging, from single and paired images.
Methods: Twenty readers (four groups of five individuals)-consultant chest (CCR), general consultant (GCR), and specialist registrar (RSR) radiologists, and infectious diseases clinicians (IDR)-assigned BSTI categories and severity in addition to modified Covid-Radiographic Assessment of Lung Edema Score (Covid-RALES), to 305 CXRs (129 paired; 2 time points) from 176 guideline-defined COVID-19 patients. Percentage agreement with a consensus of two chest radiologists was calculated for (1) categorisation to those needing CT (indeterminate) versus those that did not (classic/probable, non-COVID-19); (2) severity; and (3) severity change on paired CXRs using the two scoring systems.
We report on a wearable tear bioelectronic platform, integrating a microfluidic electrochemical detector into an eyeglasses nose-bridge pad, for non-invasive monitoring of key tear biomarkers. The alcohol-oxidase (AOx) biosensing fluidic system allowed real-time tear collection and direct alcohol measurements in stimulated tears, leading to the first wearable platform for tear alcohol monitoring. Placed outside the eye region this fully wearable tear-sensing platform addresses drawbacks of sensor systems involving direct contact with the eye as the contact lenses platform.
View Article and Find Full Text PDFThe rapid development of wearable sensing platforms in recent years has led to an array of viable monitoring applications for various target analytes. As a significant biomarker with high impact in diverse areas, the reliable on-body detection and continuous monitoring of alcohol has become a focus of many such systems. Currently, several commercial sensing platforms are available that are capable of transdermal monitoring of alcohol consumption using insensible sweat.
View Article and Find Full Text PDFWearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation.
View Article and Find Full Text PDFTumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy.
View Article and Find Full Text PDFIn this Account, we detail recent progress in wearable bioelectronic devices and discuss the future challenges and prospects of on-body noninvasive bioelectronic systems. Bioelectronics is a fast-growing interdisciplinary research field that involves interfacing biomaterials with electronics, covering an array of biodevices, encompassing biofuel cells, biosensors, ingestibles, and implantables. In particular, enzyme-based bioelectronics, built on diverse biocatalytic reactions, offers distinct advantages and represents a centerpiece of wearable biodevices.
View Article and Find Full Text PDFThe development of wearable biosensors for continuous noninvasive monitoring of target biomarkers is limited to assays of a single sampled biofluid. An example of simultaneous noninvasive sampling and analysis of two different biofluids using a single wearable epidermal platform is demonstrated here. The concept is successfully realized through sweat stimulation (via transdermal pilocarpine delivery) at an anode, alongside extraction of interstitial fluid (ISF) at a cathode.
View Article and Find Full Text PDFObjective: While many people with Type 1 diabetes find it difficult to achieve recommended blood glucose levels, a minority do achieve good control. Our study was conceived by patient and public (PP) partners and sought to learn about experiences of people living with well-controlled diabetes.
Design: A collaboration between academic health psychologists and five PP partners with experience of diabetes, who were trained to conduct and analyse semi-structured interviews.
Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device.
View Article and Find Full Text PDFThe growing recent interest in wearable and mobile technologies has led to increased research efforts toward development of non-invasive glucose monitoring platforms. Continuous glucose monitoring addresses the limitations of finger-stick blood testing and provides the opportunity for optimal therapeutic interventions. This article reviews recent advances and challenges toward the development of non-invasive epidermal electrochemical glucose sensing systems.
View Article and Find Full Text PDFThis work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats.
View Article and Find Full Text PDFAntibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides.
View Article and Find Full Text PDFThe reduced immunogenicity and increased stability of protein-polymer conjugates has made their use in therapeutic applications particularly attractive. However, the physicochemical interactions between polymer and protein, as well as the effect of this interaction on protein activity and stability, are still not fully understood. In this work, polymer-based protein engineering was used to examine the role of polymer physicochemical properties on the activity and stability of the chymotrypsin-polymer conjugates and their degree of binding to intestinal mucin.
View Article and Find Full Text PDFPurpose Grade ≥3 adverse effects prolong hospitalization and reduce chemotherapy dose intensity. The purpose of this study was to evaluate the rate and severity of high-dose methotrexate-related acute kidney injury and analyze its effect on hospital length of stay and relative chemotherapy dose intensity. Methods This was a retrospective cohort analysis.
View Article and Find Full Text PDFEnzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers.
View Article and Find Full Text PDFThe importance of early access to prehospital care has been demonstrated in many medical emergencies. This work aims to describe the potential time benefit of implementing a student Community First Responder scheme to support ambulance services in an inner-city setting in the United Kingdom. Twenty final and penultimate year medical students in the UK were trained in the "First Person on Scene" Business and Technology Education Council (BTEC) qualification.
View Article and Find Full Text PDFEnzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2014
Biocatalyst immobilization onto carbon-based nanosupports has been implemented in a variety of applications ranging from biosensing to biotransformation and from decontamination to energy storage. However, retaining enzyme functionality at carbon-based nanosupports was challenged by the non-specific attachment of the enzyme as well as by the enzyme-enzyme interactions at this interface shown to lead to loss of enzyme activity. Herein, we present a systematic study of the interplay reactions that take place upon immobilization of three pure enzymes namely soybean peroxidase, chloroperoxidase, and glucose oxidase at carbon-based nanosupport interfaces.
View Article and Find Full Text PDFAccidents involving portable ladders are a common cause of serious occupational and non-occupational injuries throughout the industrialized world. Many of these injuries could be prevented with better instruction on the proper usage of portable ladders. Research is reported that focused on both the human factors and engineering aspects of portable extension ladder usage based on common ladder setup procedures.
View Article and Find Full Text PDFBackground: The Arabian Gulf nations are undergoing rapid economic development, leading to major shifts in both the traditional lifestyle and the environment. Although the pace of change is brisk, there is a dearth of environmental health research in this region.
Objective: We describe challenges and successes of conducting an environmental epidemiologic study in the United Arab Emirates (UAE), a Gulf nation in the Middle East, with an inter-disciplinary team that includes in-country academic and government collaborators as well as U.