Publications by authors named "Alan Cahill"

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in , which encodes the β subunit of mitochondrial ATP synthase (also called complex V).

View Article and Find Full Text PDF

Chronic ethanol feeding is known to negatively impact hepatic energy metabolism. Previous studies have indicated that the underlying lesion responsible for this may lie at the level of the mitoribosome. The aim of this study was to characterize the structure of the hepatic mitoribosome in alcoholic male rats and their isocalorically paired controls.

View Article and Find Full Text PDF

Background: Chronic ethanol feeding to male rats has been shown to result in decreased mitochondrial translation, depressed respiratory complex levels and mitochondrial respiration rates. In addition, ethanol consumption has been shown to result in an increased dissociation of mitoribosomes. S-adenosyl-L-methionine (SAM) is required for the assembly and subsequent stability of mitoribosomes and is depleted during chronic ethanol feeding.

View Article and Find Full Text PDF

Chronic alcohol consumption has been shown to severely compromise mitochondrial protein synthesis. Hepatic mitochondria isolated from alcoholic animals contain decreased levels of respiratory complexes and display depressed respiration rates when compared to pair-fed controls. One underlying mechanism for this involves ethanol-elicited alterations in the structural and functional integrity of the mitochondrial ribosome.

View Article and Find Full Text PDF

Chronic ethanol feeding damages the hepatic mitochondrion by increasing mitochondrial DNA (mtDNA) oxidation, lowering mtDNA yields and impairing mitochondrial respiration. These effects are also seen during aging. By employing a 21-day chronic feeding regimen, we investigated the effects of ethanol consumption on mtDNA content and mitochondrial respiration in 2-, 12-, and 24-mo-old male rats.

View Article and Find Full Text PDF

Endonuclease G, a protein historically thought to be involved in mitochondrial DNA (mtDNA) replication, repair, recombination and degradation, has recently been reported to be involved in nuclear DNA degradation during the apoptotic process. As a result, its involvement in mtDNA homeostasis has been called into question and has necessitated detailed analyses of its precise location within the mitochondrion. Data is presented localizing rat liver endonuclease G activity exclusively to the mitochondrial intermembrane space with no activity associated with either the interior face of the inner mitochondrial membrane or with the mitochondrial matrix.

View Article and Find Full Text PDF

This article represents the proceedings of a symposium at the 2001 Research Society on Alcoholism meeting in Montreal, Canada. The chairs were Alan Cahill and Carol C. Cunningham.

View Article and Find Full Text PDF

Mitochondria are intimately involved in the generation of and defense against reactive oxygen species (ROS). Mitochondria are themselves targets of oxidative stress and also contribute to mechanisms by which oxidative stress-related signals control cell fate. Ethanol promotes oxidative stress, both by increasing ROS formation and by decreasing cellular defense mechanisms.

View Article and Find Full Text PDF