Objectives: To evaluate the efficacy and safety of intra-articular injections of a novel aggrecan mimetic, SB-061, in subjects with knee osteoarthritis (OA).
Methods: This was a randomized, placebo-controlled, double-blind phase II study comparing intra-articular injections of SB-061 with placebo (isotonic saline) for 52 weeks, administered at baseline, Wk 16, and Wk 32. Eligible subjects had a KL grade of 2 or 3 on X-ray of the target knee and a Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) pain score ≥20 out of 50 at screening and baseline visits.
Background: Osteophytes are commonly used to diagnose and guide knee osteoarthritis (OA) treatment, but their causes are unclear. Although they are not typically the focus of knee arthroplasty surgeons, they can predict case difficulty and length. Furthermore, their extent and location may yield much information about the knee joint status.
View Article and Find Full Text PDFBackground: Anterior cruciate ligament (ACL) injury increases risks for osteoarthritis (OA), a poorly modifiable and disabling condition. Joint changes of potentially reversible pre-OA have been described just 2 years after ACL reconstruction (ACLR) when early bone shape changes have also been reported.
Purpose: This study evaluates relationships between interlimb differences in tibiofemoral bone shape derived from statistical shape modeling (SSM) of magnetic resonance imaging (MRI) and participant factors on patient-reported outcomes 2 years after unilateral ACLR.
Introduction: MRI bone surface area and femoral bone shape (B-score) measures have been employed as quantitative endpoints in DMOAD clinical trials. Computerized Tomography (CT) imaging is more commonly used for 3D visualization of bony anatomy due to its high bone-soft tissue contrast. We aimed to compare CT and MRI assessments of 3D imaging biomarkers.
View Article and Find Full Text PDFBackground: TPX-100, a promotor of osteoblast and chondroblast differentiation, is a potential osteoarthritis (OA) therapy. This retrospective study compared MRI 3D femoral bone shape changes (B-scores) after intra-articular TPX-100 or placebo and analyzed the relationship between cartilage thickness and bone shape change over 12 months.
Methods: One hundred and four participants with bilateral moderate to severe knee cartilage defects were randomized to receive TPX-100 (200 mg) or placebo.
Objectives: Osteoarthritis (OA) structural status is imperfectly classified using radiographic assessment. Statistical shape modelling (SSM), a form of machine-learning, provides precise quantification of a characteristic 3D OA bone shape. We aimed to determine the benefits of this novel measure of OA status for assessing risks of clinically important outcomes.
View Article and Find Full Text PDFObjective: Accurate automated segmentation of cartilage should provide rapid reliable outcomes for both epidemiological studies and clinical trials. We aimed to assess the precision and responsiveness of cartilage thickness measured with careful manual segmentation or a novel automated technique.
Methods: Agreement of automated segmentation was assessed against 2 manual segmentation datasets: 379 magnetic resonance images manually segmented in-house (training set), and 582 from the Osteoarthritis Initiative with data available at 0, 1, and 2 years (biomarkers set).
Purpose: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms.
View Article and Find Full Text PDFFor patients undergoing routine contrast-enhanced CT examinations, an opportunity exists for concurrent osteoporosis screening without additional radiation exposure or patient time using proximal femur CT X-ray absorptiometry (CTXA). We investigated the effect of i.v.
View Article and Find Full Text PDFObjective: For patients undergoing contrast-enhanced CT examinations that include the proximal femur, an opportunity exists for concurrent screening bone mineral density (BMD) measurement. We investigated the effect of IV contrast enhancement on CT-derived x-ray absorptiometry areal BMD measurement.
Materials And Methods: Our cohort included 410 adults (mean age, 65.
Central dual-energy X-ray absorptiometry (DXA) of the lumbar spine and proximal femur is the preferred method for bone mineral density (BMD) testing. Despite the fracture risk statistics, osteoporosis testing with DXA remains underused. However, BMD can also be assessed with quantitative computed tomography (QCT) that may be available when access to DXA is restricted.
View Article and Find Full Text PDFAromatase inhibitors (AIs), the standard therapy for estrogen receptor- or progesterone receptor-positive breast cancer in postmenopausal women, lead to increased hip fractures in breast cancer patients. To investigate the mechanism of increased incidence of hip fractures in breast cancer patients treated with AIs, we evaluated bone mineral density (BMD) in the cortical and trabecular compartments and assessed femoral geometry using quantitative computed tomography (QCT) in breast cancer patients. In total, 249 early breast cancer patients who underwent QCT in their fifties (mean age 54.
View Article and Find Full Text PDFBackground Context: Despite its clinical importance, accurate identification of vertebral fractures is problematic and time-consuming. There is a recognized need to improve the detection of vertebral fractures so that appropriate high-risk patients can be selected to initiate clinically beneficial therapeutic interventions.
Purpose: To develop and evaluate semiautomatic algorithms for detailed annotation of vertebral bodies from T4 to L4 in digitized lateral spinal dual-energy X-ray absorptiometry (DXA) vertebral fracture assessment (VFA) images.
For patients undergoing screening computed tomography colonography (CTC), an opportunity exists for bone mineral density (BMD) screening without additional radiation exposure using quantitative computed tomography (QCT). This study investigated the use of dual-energy X-ray absorptiometry (DXA)-equivalent QCT Computed Tomography X-Ray Absorptiometry (CTXA) analysis at the hip obtained using CTC examinations using a retrospective asynchronous calibration of patient scans. A cohort of 33 women, age 61.
View Article and Find Full Text PDFBone mineral density (BMD) estimates for the proximal femur using Dual Energy X-ray Absorptiometry (DXA) are currently considered the standard for making a diagnosis of osteoporosis in an individual patient using BMD alone. We have compared BMD results from a commercial Quantitative CT (QCT) BMD analysis system, "CTXA Hip", which provides clinical data for the proximal femur, to results from DXA. We have also used CTXA Hip to determine cortical and trabecular contributions to total BMD.
View Article and Find Full Text PDFObjective: To evaluate subchondral bone trabecular integrity (BTI) on radiographs as a predictor of knee osteoarthritis (OA) progression.
Methods: Longitudinal (baseline, 12-month, and 24-month) knee radiographs were available for 60 female subjects with knee OA. OA progression was defined by 12- and 24-month changes in radiographic medial compartment minimal joint space width (JSW) and medial joint space area (JSA), and by medial tibial and femoral cartilage volume on magnetic resonance imaging.
Objective: To evaluate the effectiveness of using subchondral bone texture observed on a radiograph taken at baseline to predict progression of knee osteoarthritis (OA) over a 3-year period.
Methods: A total of 138 participants in the Prediction of Osteoarthritis Progression study were evaluated at baseline and after 3 years. Fractal signature analysis (FSA) of the medial subchondral tibial plateau was performed on fixed flexion radiographs of 248 nonreplaced knees, using a commercially available software tool.
Rheum Dis Clin North Am
August 2009
The progression of osteoarthritis is traditionally measured using radiographic joint space width (JSW). Numerous knee radiograph protocols have been developed with various levels of complexity and performance as it relates to detecting JSW loss (ie, joint space narrowing). Sensitivity to joint space narrowing is improved when radioanatomic alignment of the medial tibial plateau is achieved.
View Article and Find Full Text PDFStudy Design: Image analysis model development.
Objective: The objective of this study was to develop a novel clinical workflow tool that uses model-based shape recognition technology to allow efficient, semiautomated detailed annotation of each vertebra between T4 and L4 on plain lateral radiographs.
Summary Of Background Data: Identification of prevalent vertebral fractures, especially when not symptomatic, has been problematic despite their importance.
Accurate and highly reproducible measurements of the rate of progression of osteoarthritis is crucial to assessing structural change, and requires adherence to exacting standards of positioning, which include specifications for flexion and rotation of the joint, and angulation of the x-ray beam. The progression of osteoarthritis traditionally has been measured using radiographic joint space width (JSW). Over the past two decades, numerous knee radiographic protocols have been developed with various levels of complexity and performance as they relate to detecting JSW loss (ie, joint space narrowing).
View Article and Find Full Text PDF