Publications by authors named "Alan B Woodland"

We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character.

View Article and Find Full Text PDF

Diamond formation in the Earth has been extensively discussed in recent years on the basis of geochemical analysis of natural materials, high-pressure experimental studies, or theoretical aspects. Here, we demonstrate experimentally for the first time, the spontaneous crystallization of diamond from CH-rich fluids at pressure, temperature and redox conditions approximating those of the deeper parts of the cratonic lithospheric mantle (5-7 GPa) without using diamond seed crystals or carbides. In these experiments the fluid phase is nearly pure methane, even though the oxygen fugacity was significantly above metal saturation.

View Article and Find Full Text PDF

Oxygen fugacity (ƒO) is an intensive variable implicated in a range of processes that have shaped the Earth system, but there is controversy on the timing and rate of oxidation of the uppermost convecting mantle to its present ƒO around the fayalite-magnetite-quartz oxygen buffer. Here, we report Fe/ΣFe and ƒO for ancient eclogite xenoliths with oceanic crustal protoliths that sampled the coeval ambient convecting mantle. Using new and published data, we demonstrate that in these eclogites, two redox proxies, V/Sc and Fe/ΣFe, behave sympathetically, despite different responses of their protoliths to differentiation and post-formation degassing, seawater alteration, devolatilisation and partial melting, testifying to an unexpected robustness of Fe/ΣFe.

View Article and Find Full Text PDF

Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle.

View Article and Find Full Text PDF

Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection.

View Article and Find Full Text PDF