Introduction: Previous research has shown that podcasts are most frequently consumed using mobile listening devices across a wide variety of environmental, situational, and social contexts. To date, no studies have investigated how an individual's environmental context might influence their attentional engagement in podcast listening experiences. Improving understanding of the contexts in which episodes of listening take place, and how they might affect listener engagement, could be highly valuable to researchers and producers working in the fields of object-based and personalized media.
View Article and Find Full Text PDFThe spectro-temporal ripple for investigating processor effectiveness (STRIPES) test is a psychophysical measure of spectro-temporal resolution in cochlear-implant (CI) listeners. It has been validated using direct-line input and loudspeaker presentation with listeners of the Advanced Bionics CI. This article investigates the suitability of an online application using wireless streaming (webSTRIPES) as a remote test.
View Article and Find Full Text PDFIntroduction: Decentering describes the ability to voluntarily adopt an objective self-perspective from which to notice internal, typically distressing, stressors (eg, difficult thoughts, memories and feelings). The reinforcement of this skill may be an active ingredient through which different psychological interventions accrue reductions in anxiety and/or depression. However, it is unclear if decentering can be selectively trained at a young age and if this might reduce psychological distress.
View Article and Find Full Text PDFWe simulated the effect of several automatic gain control (AGC) and AGC-like systems and head movement on the output levels, and resulting interaural level differences (ILDs) produced by bilateral cochlear-implant (CI) processors. The simulated AGC systems included unlinked AGCs with a range of parameter settings, linked AGCs, and two proprietary multi-channel systems used in contemporary CIs. The results show that over the range of values used clinically, the parameters that most strongly affect dynamic ILDs are the release time and compression ratio.
View Article and Find Full Text PDFCochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce.
View Article and Find Full Text PDFThe STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is a psychophysical test of spectro-temporal resolution developed for cochlear-implant (CI) listeners. Previously, the test has been strictly controlled to minimize the introduction of extraneous, nonspectro-temporal cues. Here, the effect of relaxing many of those controls was investigated to ascertain the generalizability of the STRIPES test.
View Article and Find Full Text PDFThresholds of asymmetric pulses presented to cochlear implant (CI) listeners depend on polarity in a way that differs across subjects and electrodes. It has been suggested that lower thresholds for cathodic-dominant compared to anodic-dominant pulses reflect good local neural health. We evaluated the hypothesis that this polarity effect (PE) can be used in a site-selection strategy to improve speech perception and spectro-temporal resolution.
View Article and Find Full Text PDFThis study simulated the effect of unlinked automatic gain control (AGC) and head movement on the output levels and resulting inter-aural level differences (ILDs) produced by bilateral cochlear implant (CI) processors. The angular extent and velocity of the head movements were varied in order to observe the interaction between unlinked AGC and head movement. Static, broadband input ILDs were greatly reduced by the high-ratio, slow-time-constant AGC used.
View Article and Find Full Text PDFPsychophysical tests of spectro-temporal resolution may aid the evaluation of methods for improving hearing by cochlear implant (CI) listeners. Here the STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is described and validated. Like speech, the test requires both spectral and temporal processing to perform well.
View Article and Find Full Text PDFDue to their periodic nature, neural oscillations might represent an optimal "tool" for the processing of rhythmic stimulus input [1-3]. Indeed, the alignment of neural oscillations to a rhythmic stimulus, often termed phase entrainment, has been repeatedly demonstrated [4-7]. Phase entrainment is central to current theories of speech processing [8-10] and has been associated with successful speech comprehension [11-17].
View Article and Find Full Text PDFThe signal-to-noise ratio (SNR) benefit of hearing aid directional microphones is dependent on the angle of the listener relative to the target, something that can change drastically and dynamically in a typical group conversation. When a new target signal is significantly off-axis, directional microphones lead to slower target orientation, more complex movements, and more reversals. This raises the question of whether there is an optimal design for directional microphones.
View Article and Find Full Text PDFSound sources at the same angle in front or behind a two-microphone array (e.g., bilateral hearing aids) produce the same time delay and two estimates for the direction of arrival: A front-back confusion.
View Article and Find Full Text PDF