In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood.
View Article and Find Full Text PDFPurpose: Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9.
View Article and Find Full Text PDFBackground: Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.
View Article and Find Full Text PDFBackground: Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS.
Methods And Findings: Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.
Purpose: Attempts to selectively initiate tumor cell death through inducible apoptotic pathways are increasingly being exploited as a potential anticancer strategy. Inhibition of NAD+ synthesis by a novel agent FK866 has been recently reported to induce apoptosis in human leukemia, hepatocarcinoma cells in vitro, and various types of tumor xenografts in vivo. In the present study, we used 1H-decoupled phosphorus (31P) magnetic resonance spectroscopy (MRS) to examine the metabolic changes associated with FK866 induced tumor cell death in a mouse mammary carcinoma.
View Article and Find Full Text PDF