The flow behaviour of AA2060 Al alloy under warm/hot deformation conditions is complicated because of its dependency on strain rates (ε˙), strain (ε), and deformation modes. Thus, it is crucial to reveal and predict the flow behaviours of this alloy at a wide range of temperatures (T) and ε˙ using different constitutive models. Firstly, the isothermal tensile tests were carried out via a Gleeble-3800 thermomechanical simulator at a T range of 100, 200, 300, 400, and 500 °C and ε˙ range of 0.
View Article and Find Full Text PDFIn this study, poly(lactic acid) (PLA) and microcrystalline cellulose (MCC)-based green biocomposites were developed using a solution casting technique. Essentially, the bonding between PLA and MCC is quite feeble; therefore, the current study is conducted to strengthen the bonding by incorporating a coupling agent, thereby enhancing the overall quality of the biocomposites. Thus, the present study aimed to examine the influence of combined coupling agents-maleic anhydride (MAH) and maleic acid (MA) (MAH-MA)-on the properties of polylactic acid (PLA)/microcrystalline cellulose (MCC) biocomposites.
View Article and Find Full Text PDFThis study investigated the effect of a hemispherical friction stir welding (FSW) tool on the heat generation and mechanical properties of dissimilar butt welded AA5083 and AA7075 alloys. FSW was performed on the dissimilar aluminum alloys AA5083-H111 and AA7075-T6 using welding speeds of 25, 50, and 75 mm/min. The tool rotation rate was kept constant at 500 rpm.
View Article and Find Full Text PDFThis study aims to investigate the feasibility of hydroforming (HF) technology coupled with response surface optimization for producing high-quality five-branched AISI 304 stainless steel tubes with different diameters, addressing the shortcomings of traditional manufacturing processes. Conventional techniques often result in issues with multiple consumables, low precision, and subpar performance. The research focuses on finding optimal forming parameters for a more effective process.
View Article and Find Full Text PDFForming tubes with various bending radii without changing the bending dies is much easier for the 3D free bending forming (FBF) process. In the 3D-FBF process, different bending radii were realized by adapting the eccentricities of the bending dies. The accuracy of the curve is crucial for the precision forming of complex bending components.
View Article and Find Full Text PDFThis study aimed to propose a new approach for predicting the warm deformation behaviour of AA2060-T8 sheets by coupling computational homogenization (CH) with crystal plasticity (CP) modeling. Firstly, to reveal the warm deformation behaviour of the AA2060-T8 sheet, isothermal warm tensile testing was accomplished using a Gleeble-3800 thermomechanical simulator at the temperatures and strain rates that varied from 373 to 573 K and 0.001 to 0.
View Article and Find Full Text PDFThe development of advanced composite materials has taken center stage because of its advantages over traditional materials. Recently, carbon-based advanced additives have shown promising results in the development of advanced polymer composites. The inter- and intra-laminar fracture toughness in modes I and II, along with the thermal and electrical conductivities, were investigated.
View Article and Find Full Text PDFComposite materials are being used for high-end applications such as aviation technology, space ships, and heavy equipment manufacturing. The use of composite materials has been observed in recent advancements in the field of multifunctional composite materials (MFCMs). There is continuous progress related to improvements, innovations, and replacement of metals inspite of rigorous destructive and non-destructive testing, proving the toughness and lifelong durability of such materials.
View Article and Find Full Text PDF