The functionality of a ferroic device is intimately coupled to the configuration of domains, domain boundaries, and the possibility for tailoring them. Exemplified with a ferromagnetic system, we present a novel approach which allows the creation of new, metastable multidomain patterns with tailored wall configurations through a self-assembled geometrical transformation. By preparing a magnetic layer system on a polymeric platform including swelling layer, a repeated self-assembled rolling into a multiwinding tubular structure and unrolling of the functional membrane is obtained.
View Article and Find Full Text PDFNovel robotic, bioelectronic, and diagnostic systems require a variety of compact and high-performance sensors. Among them, compact three-dimensional (3D) vector angular encoders are required to determine spatial position and orientation in a 3D environment. However, fabrication of 3D vector sensors is a challenging task associated with time-consuming and expensive, sequential processing needed for the orientation of individual sensor elements in 3D space.
View Article and Find Full Text PDF