A set of five vitrimers with glass transition temperatures in the range of 80-90 °C were designed to assess the effect of the network structure and disulfide concentration on their dynamic and mechanical properties, and to find the best performing system overall compared to the commercial Araldite LY1564/Aradur 3486 commercial thermoset system. Vitrimer networks were prepared by incorporating mono- and bifunctional epoxy reactive diluents and an amine chain extender into the Araldite LY1564/4-aminophenyldisulfide system.
View Article and Find Full Text PDFTraditional crosslinked aero grade epoxy resins have excellent thermal-mechanical properties and solvent resistance, but they cannot be remolded, recycled, or repaired. Vitrimers can be topologically rearranged via an associative exchange mechanism, endowing them with thermoplasticity. Introducing dynamic bonds into crosslinked networks to obtain more sustainable thermosets is currently an interesting research topic.
View Article and Find Full Text PDFEpoxy resins are widely used in the composite industry due to their dimensional stability, chemical resistance, and thermo-mechanical properties. However, these thermoset resins have important drawbacks. (i) The vast majority of epoxy matrices are based on non-renewable fossil-derived materials, and (ii) the highly cross-linked molecular architecture hinders their reprocessing, repairing, and recycling.
View Article and Find Full Text PDFIn the present work, sustainable rigid polyurethane foams (RPUF) reinforced with chicken feathers (CF) were prepared and characterized. The bio-based polyol used to formulate the foams was obtained from castor oil. This investigation reports the influence of the chicken feathers fibers as reinforcement of RPUF, on water absorption, thermal, mechanical and morphological properties (field-emission scanning electron microscope-FESEM) and thermal conductivity on water-blown biofoams.
View Article and Find Full Text PDFFeathers are made of keratin, a fibrous protein with high content of disulfide-crosslinks and hydrogen-bonds. Feathers have been mainly used as reinforcing fiber in the preparation of biocomposites with a wide variety of polymers, also poly(urea-urethane)s. Surface compatibility between the keratin fiber and the matrix is crucial for having homogenous, high quality composites with superior mechanical properties.
View Article and Find Full Text PDFThe aim of this work was to develop new biodegradable polymeric materials with high loadings of chicken feather (CF). In this study, the effect of CF concentration and the type of biodegradable matrix on the physical, mechanical and thermal properties of the biocomposites was investigated. The selected biopolymers were polylactic acid (PLA), polybutyrate adipate terephthalate (PBAT) and a PLA/thermoplastic copolyester blend.
View Article and Find Full Text PDFThiol-functionalised silicone-oils were crosslinked with silver nanoparticles to give mechanically consistent elastomers with high self-healing power. The materials were broken into small pieces and put together in intimate contact for 24 hours at room temperature, observing a complete macroscopic healing and a quantitative recovery of compression-stress and strain.
View Article and Find Full Text PDF