Publications by authors named "Alaina J McGrath"

Introduction: Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aβ) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses.

Methods: We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aβ-mediated neurotoxicities in AD.  Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD.

View Article and Find Full Text PDF

Nanoparticles have been assessed in preclinical models of atherosclerosis for detection of plaque complexity and treatment. However, their successful clinical translation has been hampered by less than satisfactory plaque detection and lack of a general strategy for assessing the translational potential of nanoparticles. Herein, nanoparticles based on comb-co-polymer assemblies were synthesized through a modular construction approach with precise control over the conjugation of multiple functional building blocks for in vivo evaluation.

View Article and Find Full Text PDF

The fabrication of well-defined, multifunctional polymer brushes under ambient conditions is described. This facile method uses light-mediated, metal-free atom-transfer radical polymerization (ATRP) to grow polymer brushes with only microliter volumes required. Key to the success of this strategy is the dual action of N-phenylphenothiazine (PTH) as both an oxygen scavenger and polymerization catalyst.

View Article and Find Full Text PDF

The triple-helix stereocomplex of poly(methyl methacrylate) (PMMA) is a unique example of a multistranded synthetic helix that has significant utility and promise in materials science and nanotechnology. To gain a fundamental understanding of the underlying assembly process, discrete stereoregular oligomer libraries were prepared by combining stereospecific polymerization techniques with automated flash chromatography purification. Stereocomplex assembly of these discrete building blocks enabled the identification of (1) the minimum degree of polymerization required for the stereocomplex formation and (2) the dependence of the helix crystallization mode on the length of assembling precursors.

View Article and Find Full Text PDF

The scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16).

View Article and Find Full Text PDF

A straightforward and efficient synthetic method that transforms poly(methyl methacrylate) (PMMA) into value-added materials is presented. Specifically, PMMA is modified by transesterification to produce a variety of functional copolymers from a single starting material. Key to the reaction is the use of lithium alkoxides, prepared by treatment of primary alcohols with LDA, to displace the methyl esters.

View Article and Find Full Text PDF

The effect of dispersity on block polymer self-assembly was studied in the monodisperse limit using a combination of synthetic chemistry, matrix-assisted laser desorption ionization spectroscopy, and small-angle X-ray scattering. Oligo(methyl methacrylate) (oligoMMA) and oligo(dimethylsiloxane) (oligoDMS) homopolymers were synthesized by conventional polymerization techniques and purified to generate an array of discrete, semidiscrete, and disperse building blocks. Coupling reactions afforded oligo(DMS-MMA) block polymers with precisely tailored molar mass distributions spanning single molecular systems ( = 1.

View Article and Find Full Text PDF

A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure.

View Article and Find Full Text PDF

We report a metal-free strategy for the chain-end modification of RAFT polymers utilizing visible light. By turning the light source on or off, the reaction pathway in one pot can be switched between either complete desulfurization (hydrogen chain-end) or simple cleavage (thiol chain-end), respectively. The versatility of this process is exemplified by application to a wide range of polymer backbones under mild, quantitative conditions using commercial reagents.

View Article and Find Full Text PDF

Thermoresponsive polymers exhibiting lower critical solution temperatures (LCSTs) in aqueous solution have garnered considerable attention for the development of smart materials. Herein, we report the synthesis and properties of pH-tunable thermoresponsive poly(ethylene oxide) (PEO)-based functional polymers bearing pendant amine groups with varying cloud points. Well-defined poly(ethylene oxide--allyl glycidyl ether) (P(EO--AGE)) copolymers were prepared via controlled anionic ring-opening copolymerization of ethylene oxide (EO) with 10 mol % of a functional allyl glycidyl ether (AGE) comonomer.

View Article and Find Full Text PDF

A light-mediated method for the facile removal of polymer end groups that are common to controlled radical polymerization techniques is presented. This metal-free strategy is general, being effective for chlorine, bromine, and thiocarbonylthio moieties as well as a number of different polymer families (styrenic, acrylic, and methacrylic). In addition to solution reactions, this process is readily translated to thin films, where light mediation allows the straightforward fabrication of hierarchically patterned polymer brushes.

View Article and Find Full Text PDF

Purpose: To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles.

Methods: To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after (64)Cu radiolabeling.

View Article and Find Full Text PDF

A versatile strategy is reported for the multigram synthesis of discrete oligomers from commercially available monomer families, e.g., acrylates, styrenics, and siloxanes.

View Article and Find Full Text PDF

The development of an operationally simple, metal-free surface-initiated atom transfer radical polymerization (SI-ATRP) based on visible-light mediation is reported. The facile nature of this process enables the fabrication of well-defined polymer brushes from flat and curved surfaces using a "benchtop" setup that can be easily scaled to four-inch wafers. This circumvents the requirement of stringent air-free environments (i.

View Article and Find Full Text PDF

We report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( or ) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock.

View Article and Find Full Text PDF

A persistent triptycenyl sulfenic acid is used as a model for cysteine-derived and other biologically relevant sulfenic acids in experiments which define their redox chemistry. EPR spectroscopy reveals that sulfinyl radicals are persistent and unreactive toward O(2), allowing the O-H bonding dissociation enthalpy (BDE) of the sulfenic acid to be readily determined by equilibration with TEMPO as 71.9 kcal/mol.

View Article and Find Full Text PDF