Background: Hydrated electrons, which are short-lived products of radiolysis in water, increase the optical absorption of water, providing a pathway toward near-tissue-equivalent clinical radiation dosimeters. This has been demonstrated in high-dose-per-pulse radiochemistry research, but, owing to the weak absorption signal, its application in existing low-dose-per-pulse radiotherapy provided by clinical linear accelerators (linacs) has yet to be investigated.
Purpose: The aims of this study were to measure the optical absorption associated with hydrated electrons produced by clinical linacs and to assess the suitability of the technique for radiotherapy (⩽ 1 cGy per pulse) applications.
In hydrated electron (e) dosimetry, absorbed radiation dose to water is measured by monitoring the concentration of radiation-induced e. However, to obtain accurate dose, the radiation chemical yield of e, G(e), is needed for the radiation quality/setup under investigation. The aim of this study was to investigate the time-evolution of the G-values for the main generated reactive species during water radiolysis using GEANT4-DNA.
View Article and Find Full Text PDF