A model of early auditory processing is proposed in which each peripheral channel is processed by a delay-and-subtract cancellation filter, tuned independently for each channel with a criterion of minimum power. For a channel dominated by a pure tone or a resolved partial of a complex tone, the optimal delay is its period. For a channel responding to harmonically related partials, the optimal delay is their common fundamental period.
View Article and Find Full Text PDFThis paper suggests an explanation for listeners' greater tolerance to positive than negative mistuning of the higher tone within an octave pair. It hypothesizes a neural circuit tuned to cancel the lower tone that also cancels the higher tone if that tone is in tune. Imperfect cancellation is the cue to mistuning of the octave.
View Article and Find Full Text PDFWe investigated the effect of a biasing tone close to 5, 15, or 30 Hz on the response to higher-frequency probe tones, behaviorally, and by measuring distortion-product otoacoustic emissions (DPOAEs). The amplitude of the biasing tone was adjusted for criterion suppression of cubic DPOAE elicited by probe tones presented between 0.7 and 8 kHz, or criterion loudness suppression of a train of tone-pip probes in the range 0.
View Article and Find Full Text PDFThis paper reviews the hypothesis of according to which an interfering sound is suppressed or canceled on the basis of its harmonicity (or periodicity in the time domain) for the purpose of Auditory Scene Analysis. It defines the concept, discusses theoretical arguments in its favor, and reviews experimental results that support it, or not. If correct, the hypothesis may draw on time-domain processing of temporally accurate neural representations within the brainstem, as required also by the classic equalization-cancellation model of binaural unmasking.
View Article and Find Full Text PDFAn auditory stimulus can be related to the brain response that it evokes by a stimulus-response model fit to the data. This offers insight into perceptual processes within the brain and is also of potential use for devices such as brain computer interfaces (BCIs). The quality of the model can be quantified by measuring the fit with a regression problem, or by applying it to a classification task and measuring its performance.
View Article and Find Full Text PDFSeeing a speaker's face benefits speech comprehension, especially in challenging listening conditions. This perceptual benefit is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, whereby movement of a speaker's face provides temporal cues to auditory cortex, and articulatory information from the speaker's mouth can aid recognizing specific linguistic units (e.g.
View Article and Find Full Text PDFThis paper proposes Shared Component Analysis (SCA) as an alternative to Principal Component Analysis (PCA) for the purpose of dimensionality reduction of neuroimaging data. The trend towards larger numbers of recording sensors, pixels or voxels leads to richer data, with finer spatial resolution, but it also inflates the cost of storage and computation and the risk of overfitting. PCA can be used to select a subset of orthogonal components that explain a large fraction of variance in the data.
View Article and Find Full Text PDFHumans engagement in music rests on underlying elements such as the listeners' cultural background and interest in music. These factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing.
View Article and Find Full Text PDFPower line artifacts are the bane of animal and human electrophysiology. A number of methods are available to help attenuate or eliminate them, but each has its own set of drawbacks. In this brief note I present a simple method that combines the advantages of spectral and spatial filtering, while minimizing their downsides.
View Article and Find Full Text PDFFilters are commonly used to reduce noise and improve data quality. Filter theory is part of a scientist's training, yet the impact of filters on interpreting data is not always fully appreciated. This paper reviews the issue and explains what a filter is, what problems are to be expected when using them, how to choose the right filter, and how to avoid filtering by using alternative tools.
View Article and Find Full Text PDFHumans comprehend speech despite the various challenges such as mispronunciation and noisy environments. Our auditory system is robust to these thanks to the integration of the sensory input with prior knowledge and expectations built on language-specific regularities. One such regularity regards the permissible phoneme sequences, which determine the likelihood that a word belongs to a given language (phonotactic probability; "blick" is more likely to be an English word than "bnick").
View Article and Find Full Text PDFBrain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and related techniques often have poor signal-to-noise ratios due to the presence of multiple competing sources and artifacts. A common remedy is to average responses over repeats of the same stimulus, but this is not applicable for temporally extended stimuli that are presented only once (speech, music, movies, natural sound). An alternative is to average responses over multiple subjects that were presented with identical stimuli, but differences in geometry of brain sources and sensors reduce the effectiveness of this solution.
View Article and Find Full Text PDFThe decoding of selective auditory attention from noninvasive electroencephalogram (EEG) data is of interest in brain computer interface and auditory perception research. The current state-of-the-art approaches for decoding the attentional selection of listeners are based on linear mappings between features of sound streams and EEG responses (forward model), or vice versa (backward model). It has been shown that when the envelope of attended speech and EEG responses are used to derive such mapping functions, the model estimates can be used to discriminate between attended and unattended talkers.
View Article and Find Full Text PDFElectroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact.
View Article and Find Full Text PDFThe relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds.
View Article and Find Full Text PDFStudies that measure pitch discrimination relate a subject's response on each trial to the stimuli presented on that trial, but there is evidence that behavior depends also on earlier stimulation. Here, listeners heard a sequence of tones and reported after each tone whether it was higher or lower in pitch than the previous tone. Frequencies were determined by an adaptive staircase targeting 75% correct, with interleaved tracks to ensure independence between consecutive frequency changes.
View Article and Find Full Text PDFThe auditory system processes temporal information at multiple scales, and disruptions to this temporal processing may lead to deficits in auditory tasks such as detecting and discriminating sounds in a noisy environment. Here, a modelling approach is used to study the temporal regularity of firing by chopper cells in the ventral cochlear nucleus, in both the normal and impaired auditory system. Chopper cells, which have a strikingly regular firing response, divide into two classes, sustained and transient, based on the time course of this regularity.
View Article and Find Full Text PDFStudies that measure frequency discrimination often use 2, 3, or 4 tones per trial. This paper shows an investigation of a two-alternative forced choice (2AFC) task in which each tone of a series is judged relative to the previous tone ("sliding 2AFC"). Potential advantages are a greater yield (number of responses per unit time), and a more uniform history of stimulation for the study of context effects, or to relate time-varying performance to cortical activity.
View Article and Find Full Text PDFBackground: Muscle artifacts and electrode noise are an obstacle to interpretation of EEG and other electrophysiological signals. They are often channel-specific and do not fully benefit from component analysis techniques such as ICA, and their presence reduces the dimensionality needed by those techniques. Their high-frequency content may mask or masquerade as gamma band cortical activity.
View Article and Find Full Text PDFObjective: Oscillations are an important aspect of brain activity, but they often have a low signal-to-noise ratio (SNR) due to source-to-electrode mixing with competing brain activity and noise. Filtering can improve the SNR of narrowband signals, but it introduces ringing effects that may masquerade as genuine oscillations, leading to uncertainty as to the true oscillatory nature of the phenomena. Likewise, time-frequency analysis kernels have a temporal extent that blurs the time course of narrowband activity, introducing uncertainty as to timing and causal relations between events and/or frequency bands.
View Article and Find Full Text PDFIn animal models, single-neuron response properties such as stimulus-specific adaptation have been described as possible precursors to mismatch negativity, a human brain response to stimulus change. In the present study, we attempted to bridge the gap between human and animal studies by characterising responses to changes in the frequency of repeated tone series in the anesthetised guinea pig using small-animal magnetoencephalography (MEG). We showed that 1) auditory evoked fields (AEFs) qualitatively similar to those observed in human MEG studies can be detected noninvasively in rodents using small-animal MEG; 2) guinea pig AEF amplitudes reduce rapidly with tone repetition, and this AEF reduction is largely complete by the second tone in a repeated series; and 3) differences between responses to the first (deviant) and later (standard) tones after a frequency transition resemble those previously observed in awake humans using a similar stimulus paradigm.
View Article and Find Full Text PDFWe review a simple yet versatile approach for the analysis of multichannel data, focusing in particular on brain signals measured with EEG, MEG, ECoG, LFP or optical imaging. Sensors are combined linearly with weights that are chosen to provide optimal signal-to-noise ratio. Signal and noise can be variably defined to match the specific need, e.
View Article and Find Full Text PDFLocal field potentials (LFPs) recorded in the auditory cortex of mammals are known to reveal weakly selective and often multimodal spectrotemporal receptive fields in contrast to spiking activity. This may in part reflect the wider "listening sphere" of LFPs relative to spikes due to the greater current spread at low than high frequencies. We recorded LFPs and spikes from auditory cortex of guinea pigs using 16-channel electrode arrays.
View Article and Find Full Text PDFI present a method for analyzing multichannel recordings in response to repeated stimulus presentation. Quadratic Component Analysis (QCA) extracts responses that are stimulus-induced (triggered by the stimulus but not precisely locked in time), as opposed to stimulus-evoked (time-locked to the stimulus). Induced responses are often found in neural response data from magnetoencephalography (MEG), electroencephalography (EEG), or multichannel electrophysiological and optical recordings.
View Article and Find Full Text PDF