A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (M) containing polyoxometalates (POMs) with the formula [M(HO)PWO] on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(HO), onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [PWO] species to generate "" the target [Fe(HO)PWO] moieties.
View Article and Find Full Text PDFSol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
View Article and Find Full Text PDFThe study of planar energy storage devices, characterized by low-cost, high capacity, and satisfactory flexibility, is becoming a valuable research hotspot. Graphene, monolayer sp hybrid carbon atoms with a large surface area, always acts as its active component, yet there is a tension between its high conductivity and ease of implementation. Although the difficult-to-assemble graphene can easily achieve planar assemblies in its highly oxidized form (GO), the undesirable conductivity, even after proper reduction, still restricts its further applications.
View Article and Find Full Text PDFThis review article comprehensively discusses the various electrochemical approaches for measuring and detecting oxidative stress biomarkers and enzymes, particularly reactive oxygen/nitrogen species, highly reactive chemical molecules, which are the byproducts of normal aerobic metabolism and can oxidize cellular components such as DNA, lipids, and proteins. First, we address the latest research on the electrochemical determination of reactive oxygen species generating enzymes, followed by detection of oxidative stress biomarkers, and final determination of total antioxidant activity (endogenous and exogenous). Most electrochemical sensing platforms exploited the unique properties of micro- and nanomaterials such as carbon nanomaterials, metal or metal oxide nanoparticles (NPs), conductive polymers and metal-nano compounds, which have been mainly used for enhancing the electrocatalytic response of sensors/biosensors.
View Article and Find Full Text PDFIron (II) tris(2,2'-bipyridine) complexes, [Fe(bpy)], have been synthesized and immobilized in organosulfonate-functionalized nanostructured silica thin films taking advantage of the stabilization of [Fe(HO)] species by hydrogen bonds to the anionic sulfonate moieties grafted to the silica nanopores. In a first step, thiol-based silica films have been electrochemically generated on indium tin oxide (ITO) substrates by co-condensation of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS). Secondly, the thiol function has been modified to sulfonate by chemical oxidation using hydrogen peroxide in acidic medium as an oxidizing agent.
View Article and Find Full Text PDFIndium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups electrografting (, electrochemical reduction of generated aminophenyl monodiazonium salt).
View Article and Find Full Text PDFSilica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels.
View Article and Find Full Text PDFAcc Chem Res
September 2021
In this work, we have developed a chemical procedure enabling the preparation of highly ordered and vertically aligned mesoporous silica films containing selected contents of silver ions bonded inside the mesopore channels via anchoring propyl-carboxyl units. The procedure involves the electrochemically assisted self-assembly co-condensation of tetraethoxysilane and (3-cyanopropyl)triethoxysilane in the presence of cetyltrimethylammonium bromide as a surfactant, the subsequent hydrolysis of cyano groups into carboxylate ones, followed by their complexation with silver ions. The output materials have been electrochemically characterized with regard to the synthesis effectiveness in order to confirm and quantify the presence of the silver ions in the material.
View Article and Find Full Text PDFInteractions of a protein with a solid-liquid or a liquid-liquid interface may destabilize its conformation and hence result in a loss of biological activity. We propose here a method for the immobilization of proteins at an electrified liquid-liquid interface. Cytochrome c (Cyt c) is encapsulated in a silica matrix through an electrochemical process at an electrified liquid-liquid interface.
View Article and Find Full Text PDFIn the present work, we report the electron transfers occurring after ionization of the guest molecules of t-stilbene incorporated in graphitized HZSM-5 zeolites and we compare these results with the data obtained previously for graphite-free zeolites. Complementary diffuse reflectance UV-vis and Raman scattering spectroscopies provide evidence for stabilization of long lived charge separated states as observed in non-graphitized ZSM-5. The spectral features indicate that these species are located in the channels of the zeolite structure.
View Article and Find Full Text PDFRecent and potential applications of electrochromic materials include smart windows, optoelectronic devices, and energy conversion. In this study, we have incorporated bis(terpyridine) iron (II) complexes into vertically-oriented silica thin films deposited on indium-tin oxide (ITO) and their electrochromic behavior has been investigated. If 2,2':6',2″-terpyridine is commonly used as a ligand for forming metallo-supramolecular assemblies, with the objective to get metal-terpyridine complexes with multiple stable redox states, their simple and reliable arrangement into linear structures enabling effective electronic communication is however more challenging.
View Article and Find Full Text PDFA novel concept is introduced for signal amplification in electrochemical sensing: the electro-oligomerisation stripping voltammetry, which has been applied here to the improved detection of the isoproturon herbicide in spring waters as a proof-of-principle. It involves a potentiostatic accumulation step onto a glassy carbon electrode (at +1.5 V vs Ag/AgCl reference electrode for 300 s) leading to the formation of an oligomeric film, which is then detected by cathodic stripping square wave voltammetry (SWV).
View Article and Find Full Text PDFIt appeared that either the carbon paste or the screen-printed carbon electrodes that were modified with gold nanoparticles (AuNPs) gave rise to the largest current responses after a rapid screening of various nanomaterials as modifiers of carbon composite electrodes in view of designing an electrochemical sensor for Moxifloxacin Hydrochloride (Moxi). The screen-printed electrode (SPE) support was preferred over the carbon paste one for its ability to be used as disposable single-use sensor enabling the circumvention of the problems of surface fouling encountered in the determination of Moxi. The response of AuNPs modified SPE to Moxi was investigated by cyclic voltammetry (CV) (including the effect of the potential scan rate and the pH of the medium), chronoamperometry, and differential pulse voltammetry (DPV) after morphological and physico-chemical characterization.
View Article and Find Full Text PDFOrganic-inorganic hybrid membranes, made of a high density of redox active moieties covalently bonded to the internal surfaces of vertically aligned mesoporous silica thin films, are relevant for applications in transparent energy storage devices. This is demonstrated here on the basis of functionalized transparent mesoporous silica thin films prepared on the indium-tin oxide electrode from the combination of an electrochemically induced self-assembly method (to generate azide-functionalized silica) and a copper-catalyzed azide-alkyne click reaction (to derivatize the material with electroactive groups). The very small thickness (105 nm) and the uniformly distributed vertical mesochannels with ultranarrow diameter (2 nm) make the hybrid film a promising substrate that not only achieves a transparency of 82% but also provides large surface area to accommodate a high density of redox active species such as ferrocene.
View Article and Find Full Text PDFScanning gel electrochemical microscopy (SGECM) is a novel technique measuring local electrochemistry based on a gel probe. The gel probe, which is fabricated by electrodeposition of hydrogel on a microdisk electrode, immobilizes the electrolyte, and constitutes a two-electrode system upon contact with the sample. The contact area determines the lateral physical resolution of the measurement, and considering the soft nature of the gel it is essential to be well analyzed.
View Article and Find Full Text PDFElectronics, and nanoelectronics in particular, represent one of the most promising branches of technology. The search for novel and more efficient materials seems to be natural here. Thus far, silicon-based devices have been monopolizing this domain.
View Article and Find Full Text PDFScanning electrochemical probe techniques have been widely applied for analyzing the local electrochemical activity of surfaces and interfaces. In this work, we develop a new concept of carrying out local electrochemical measurements by localizing both the electrode and the electrolyte. This is achieved through a gel probe, which is prepared by electrodepositing chitosan-gelatin gel on a microdisk electrode.
View Article and Find Full Text PDFAn electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively charged mesoporous channels.
View Article and Find Full Text PDFThe formation of copper atomic contacts has been investigated. Copper nanowires were grown by electrochemical deposition, in the scanning electrochemical microscopy (SECM) configuration, from a platinum microelectrode to an indium tin oxide (ITO) substrate. Self-termination leaves copper filaments between the two electrodes with an atomic point contact at the ITO electrode.
View Article and Find Full Text PDFAn injectable purely apatitic calcium phosphate cement (CPC) was successfully combined to a water-soluble radiopaque agent (i.e., Xenetix ), to result in an optimized composition that was found to be as satisfactory as poly(methyl methacrylate) (PMMA) formulations used for vertebroplasty, in terms of radiopacity, texture and injectability.
View Article and Find Full Text PDFSDS is commonly employed as BGE additive in CZE analysis of non-enveloped icosahedral viruses. But the way by which SDS interacts with the surface of such viruses remains to date poorly known, making complicate to understand their behavior during a run. In this article, two related bacteriophages, MS2 and Qβ, are used as model to investigate the migration mechanism of non-enveloped icosahedral viruses in SDS-based CZE.
View Article and Find Full Text PDF