Publications by authors named "Alain Trautmann"

Article Synopsis
  • In France, 40% of preventable cancers are linked to lifestyle choices and occupational exposures.
  • Despite substantial evidence, public health initiatives mainly emphasize personal behavior changes rather than addressing larger socio-environmental issues.
  • The article explores why the influence of socio-environmental factors is often overlooked in discussions about cancer prevention.
View Article and Find Full Text PDF

Hypothalamus stimulation by inflammatory and / or stress signals can trigger activation of the HPA (hypothalamic-pituitary-adrenal) axis, which includes the hypothalamus, pituitary and adrenal gland. Acute activation of the HPA axis is fundamental for the fight or flight response. It allows a maximal energy mobilization available for an effort, whilst erasing fatigue.

View Article and Find Full Text PDF

Adoptive transfer of T cells expressing chimeric antigen receptors (CAR) has shown remarkable clinical efficacy against advanced B-cell malignancies but not yet against solid tumors. Here, we used fluorescent imaging microscopy and assays to compare the early functional responses (migration, Ca, and cytotoxicity) of CD20 and EGFR CAR T cells upon contact with malignant B cells and carcinoma cells. Our results indicated that CD20 CAR T cells rapidly form productive ICAM-1-dependent conjugates with their targets.

View Article and Find Full Text PDF

Acute fatigue after exertion, like acute inflammation after injury, is useful for our body. On the contrary, both chronic fatigue and chronic inflammation are deleterious, and they are associated in many diseases. In this first part, we will analyze different immune phenomena (bystander activation, memory of the innate immune system, link with the intestinal microbiota) involved in triggering chronic inflammation.

View Article and Find Full Text PDF

The majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain paucisymptomatic, contrasting with a minority of infected individuals in danger of death. Here, we speculate that the robust disease resistance of most individuals is due to a swift production of type I interferon (IFNα/β), presumably sufficient to lower the viremia. A minority of infected individuals with a preexisting chronic inflammatory state fail to mount this early efficient response, leading to a delayed harmful inflammatory response.

View Article and Find Full Text PDF

Background: Tumor relapse constitutes a major challenge for anti-tumoral treatments, including immunotherapies. Indeed, most cancer-related deaths occur during the tumor relapse phase.

Methods: We designed a mouse model of tumor relapse in which mice transplanted with E7 TC1 tumor cells received a single therapeutic vaccination of STxB-E7+IFNα.

View Article and Find Full Text PDF

Recently, disulfiram has been proposed as a promising treatment for people suffering from persistent symptoms of Lyme Disease. Disulfiram has several distinct molecular targets. The most well-known is alcohol dehydrogenase, a key enzyme for detoxifying the organism after alcohol ingestion.

View Article and Find Full Text PDF

The goal of this review is to pinpoint the specific features, including the weaknesses, of various tumor models, and to discuss the reasons why treatments that are efficient in murine tumor models often do not work in clinics. In a detailed comparison of transplanted and spontaneous tumor models, we focus on structure-function relationships in the tumor microenvironment. For instance, the architecture of the vascular tree, which depends on whether tumor cells have gone through epithelial-mesenchymal transition, is determinant for the extension of the spontaneous necrosis, and for the intratumoral localization of the immune infiltrate.

View Article and Find Full Text PDF

β-Adrenergic receptor (β-AR) signaling exerts protumoral effects by acting directly on tumor cells and angiogenesis. In addition, β-AR expression on immune cells affects their ability to mount antitumor immune responses. However, how β-AR signaling impinges antitumor immune responses is still unclear.

View Article and Find Full Text PDF

Type I interferons (IFN) are being rediscovered as potent anti-tumoral agents. Activation of the STimulator of INterferon Genes (STING) by DMXAA (5,6-dimethylxanthenone-4-acetic acid) can induce strong production of IFNα/β and rejection of transplanted primary tumors. In the present study, we address whether targeting STING with DMXAA also leads to the regression of spontaneous MMTV-PyMT mammary tumors.

View Article and Find Full Text PDF

It is well established that tumor-associated macrophages (TAM) found in most advanced tumors have a pro-tumoral role. In this context, TAM limit the activity of tumor-infiltrating lymphocytes (TIL), and a number of mechanisms have been described including a trapping in the stroma, impeding TIL to reach malignant cells. Based on these results, a number of therapeutic approaches have been designed to deplete TAM.

View Article and Find Full Text PDF

Regressing tumors are usually associated with a large immune infiltrate, but the molecular and cellular interactions that govern a successful anti-tumor immunity remain elusive. Here, we have triggered type I Interferon (IFN) signaling in a breast tumor model (MMTV-PyMT) using 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a ligand of the STimulator of Interferon Genes, STING. The 2 main events rapidly triggered by DMXAA in transplanted PyMT tumors are 1) the disruption of the tumor vasculature, followed by hypoxia and cell death; 2) the release of chemokines.

View Article and Find Full Text PDF

We report a method of fabrication of fluorescent magnetosomes, designated as MCR400, in which 400 μM of rhodamine B are introduced in the growth medium of AMB-1 magnetotactic bacteria and fluorescent magnetosomes are then extracted from these bacteria. These fluorescent magnetosomes behave differently from most fluorescent nanoprobes, which often lead to fluorescence losses over time due to photobleaching. Indeed, when MCR400 are heated to 30-90 °C, brought to an acidic pH, or exposed to radiations, we observed that their fluorescence intensity increased.

View Article and Find Full Text PDF

Next-generation sequencing technologies have provided us with a precise description of the mutational burden of cancers, making it possible to identify targetable oncogene addictions. However, the emergence of resistant clones is an inevitable limitation of therapies targeting these addictions. Alternative approaches to cancer treatment are therefore required.

View Article and Find Full Text PDF

In this review will be underlined two simple ideas of potential interest for the design of cancer immunotherapies. One concerns the importance of kinetics, with the key notion that a single cause may trigger two opposite effects with different kinetics. The importance of this phenomenon will be underlined in neurobiology, transcription networks and the immune system.

View Article and Find Full Text PDF

Most cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection.

View Article and Find Full Text PDF

This note challenges the current idea that a key role of T cells in tumor regression is to directly kill tumor cells. It favors the view that TIL are keys but act indirectly by helping other immune cells to damage the tumor and its stroma.

View Article and Find Full Text PDF

Appropriate localization and migration of T cells is a prerequisite for antitumor immune surveillance. Studies using fixed tumor samples from human patients have shown that T cells accumulate more efficiently in the stroma than in tumor islets, but the mechanisms by which this occurs are unknown. By combining immunostaining and real-time imaging in viable slices of human lung tumors, we revealed that the density and the orientation of the stromal extracellular matrix likely play key roles in controlling the migration of T cells.

View Article and Find Full Text PDF

To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture.

View Article and Find Full Text PDF