Background: We studied the poorly-known dynamics of circulating DNA (cir-nDNA), as monitored prospectively over an extended post-surgery period, in patients with cancer.
Methods: On patients with stage III colon cancer (N = 120), using personalised molecular tags we carried out the prospective, multicenter, blinded cohort study of the post-surgery serial analysis of cir-nDNA concentration. 74 patients were included and 357 plasma samples tested.
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity.
View Article and Find Full Text PDFObjectives: Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients.
Methods: We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI).
We examined from a large exploratory study cohort of COVID-19 patients ( = 549) a validated panel of neutrophil extracellular traps (NETs) markers in different categories of disease severity. Neutrophil elastase (NE), myeloperoxidase (MPO), and circulating nuclear DNA (cir-nDNA) levels in plasma were seen to gradually and significantly ( < 0.0001) increase with the disease severity: mild (3.
View Article and Find Full Text PDFBackground: Research on circulating mitochondrial DNA (cir-mtDNA) based diagnostic is insufficient, as to its function, origin, structural features, and particularly its standardization of isolation. To date, plasma preparation performed in previous studies do not take into consideration the potential bias resulting from the release of mitochondria by activated platelets.
Methods: To tackle this, we compared the mtDNA amount determined by a standard plasma preparation method or a method optimally avoiding platelet activation.
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways.
View Article and Find Full Text PDFCancer Discov
October 2023
By shedding light on the cellular origins of circulating DNA (cirDNA), this research provides important insights into the mechanisms of cirDNA production in cancer. Contrary to expectations, the increased cirDNA in patients with cancer was not derived predominantly from neoplastic cells or surrounding nonneoplastic epithelial cells; rather, the excess cirDNA originated primarily from leukocytes, implying a systemic impact of cancer on cell turnover or DNA clearance. See related article by Mattox et al.
View Article and Find Full Text PDFChromosome stability is a key point in genome evolution, particularly that of the Y chromosome. The Y chromosome loss in blood and tumor cells is well established. Through processes that are common to other chromosomes too, the Y chromosome undergoes degradation and fragmentation in the blood stream before elimination.
View Article and Find Full Text PDFIn addition to their intracellular mobility, mitochondria and their components can exist outside the cells from which they originate. As a result, they are capable of acting on non-parental distant cells and mediate intercellular communication in physiological conditions and in a variety of pathologies. It has recently been demonstrated that this horizontal transfer governs a wide range of biological processes, such as tissue homeostasis, the rescue of injured recipient cells, and tumorigenesis.
View Article and Find Full Text PDFThe function, origin and structural features of circulating nuclear DNA (cir-nDNA) and mitochondrial DNA (cir-mtDNA) are poorly known, even though they have been investigated in numerous clinical studies, and are involved in a number of routine clinical applications. Based on our previous report disproving the conventional plasma isolation used for cirDNA analysis, this work enables a direct topological comparison of the circulating structures associated with nuclear DNA and mitochondrial cell-free DNA. We used a Q-PCR and low-pass whole genome sequencing (LP-WGS) combination approach of cir-nDNA and cir-mtDNA, extracted using a procedure that eliminates platelet activation during the plasma isolation process to prevent mitochondria release in the extracellular milieu.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2022
Advances in knowledge continue to be made regarding biological structures which may be present in blood circulation, such as circulating cell-free DNA, extracellular vesicles, neutrophil extracellular traps (NETs), and activated platelet-derived or circulating cell-free mitochondria. These circulating elements may be of systemic significance, in particular with respect to immunomodulation and cell-to-cell communication. This fact highlights the need to take into consideration the delivery to the host of various biological structures and by-products by means of blood- or blood products transfusion; and to investigate their potential side effects.
View Article and Find Full Text PDFBackground: As circulating DNA (cirDNA) is mainly detected as mononucleosome-associated circulating DNA (mono-N cirDNA) in blood, apoptosis has until now been considered as the main source of cirDNA. The mechanism of cirDNA release into the circulation, however, is still not fully understood. This work addresses that knowledge gap, working from the postulate that neutrophil extracellular traps (NET) may be a source of cirDNA, and by investigating whether NET may directly produce mono-N cirDNA.
View Article and Find Full Text PDFIn the early phase of the pandemic, we were among the first to postulate that neutrophil extracellular traps (NETs) play a key role in COVID-19 pathogenesis. This exploratory prospective study based on 279 individuals showed that plasma levels of neutrophil elastase, myeloperoxidase and circulating DNA of nuclear and mitochondrial origins in nonsevere (NS), severe (S) and postacute phase (PAP) COVID-19 patients were statistically different as compared to the levels in healthy individuals, and revealed the high diagnostic power of these NETs markers in respect to the disease severity. The diagnostic power of NE, MPO, and cir-nDNA as determined by the Area Under Receiver Operating Curves (AUROC) was 0.
View Article and Find Full Text PDFBesides the standard parameters used for colorectal cancer (CRC) management, new features are needed in clinical practice to improve progression-free and overall survival. In some cancers, the microenvironment mechanical properties can contribute to cancer progression and metastasis formation, or constitute a physical barrier for drug penetration or immune cell infiltration. These mechanical properties remain poorly known for colon tissues.
View Article and Find Full Text PDFUnderstanding whether SARS-CoV-2 could infect cells and tissues handled during ART is crucial for risk mitigation, especially during the implantation window when either endometrial biopsies are often practiced for endometrial receptivity assessment or embryo transfer is performed. To address this question, this review analyzed current knowledge of the field and retrospectively examined the gene expression profiles of SARS-CoV-2-associated receptors and proteases in a cohort of ART candidates using our previous Affymetrix microarray data. Human endometrial tissue under natural and controlled ovarian stimulation cycles and preimplantation embryos were analyzed.
View Article and Find Full Text PDFMethylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers.
View Article and Find Full Text PDFCirculating cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA), which can be obtained from serial liquid biopsies to enable tumor genome analysis throughout the course of treatment. We investigated cfDNA and mutant ctDNA as potential biomarkers to predict the best outcomes of regorafenib-treated metastatic colorectal cancer (mCRC) patients. We analyzed longitudinally collected plasma cfDNA of 43 mCRC patients prospectively enrolled in the phase II TEXCAN trial by IntPlex qPCR.
View Article and Find Full Text PDFTo unequivocally address their unresolved intimate structures in blood, we scrutinized the size distribution of circulating cell-free DNA (cfDNA) using whole-genome sequencing (WGS) from both double- and single-strand DNA library preparations (DSP and SSP, n = 7) and using quantitative PCR (Q-PCR, n = 116). The size profile in healthy individuals was remarkably homogenous when using DSP sequencing or SSP sequencing. CfDNA size profile had a characteristic nucleosome fragmentation pattern.
View Article and Find Full Text PDFCell-free DNA (cfDNA) has become widely recognized as a promising candidate biomarker for minimally invasive characterization of various genomic disorders and other clinical scenarios. However, among the obstacles that currently challenge the general progression of the research field, there remains an unmet need for unambiguous universal cfDNA nomenclature. To address this shortcoming, we classify in this report the different types of cfDNA molecules that occur in the human body based on its origin, genetic traits, and locality.
View Article and Find Full Text PDF