Publications by authors named "Alain Pugin"

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling.

View Article and Find Full Text PDF

Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak.

View Article and Find Full Text PDF

We analyze, for the first time, the early signal transduction pathways triggered by methyl jasmonate (MJ) and cyclodextrins (CDs) in tobacco (Nicotiana tabacum) cell cultures, paying particular attention to changes in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), the production of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), and late events like the induction of capsidiol. Our data indicate that MJ and CDs trigger a [Ca(2+)](cyt) rise promoted by Ca(2+) influx through Ca(2+)-permeable channels. The joint presence of MJ and CDs provokes a first increase in [Ca(2+)](cyt) similar to that observed in MJ-treated cells, followed by a second peak similar to that found in the presence of CDs alone.

View Article and Find Full Text PDF

The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P.

View Article and Find Full Text PDF

The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE).

View Article and Find Full Text PDF

The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol.

View Article and Find Full Text PDF

Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling.

View Article and Find Full Text PDF

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry).

View Article and Find Full Text PDF

The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by beta-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine.

View Article and Find Full Text PDF

Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway.

View Article and Find Full Text PDF

Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H(2)O(2) production, that allows the activation of defense genes, leading to defense reactions.

View Article and Find Full Text PDF

Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal.

View Article and Find Full Text PDF

In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output.

View Article and Find Full Text PDF

Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented.

View Article and Find Full Text PDF

Colonization of roots by selected strains of fluorescent Pseudomonas spp. can trigger induced systemic resistance (ISR) against foliar pathogens in a plant species-specific manner. It has been suggested that early responses in cell suspension cultures in response to rhizobacterial elicitors, such as generation of active oxygen species (AOS) and extracellular medium alkalinization (MA), are linked to the development of ISR in whole plants.

View Article and Find Full Text PDF

When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated.

View Article and Find Full Text PDF

Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways.

View Article and Find Full Text PDF

Much attention has been paid to nitric oxide (NO) research since its discovery as a physiological mediator of plant defence responses. In recent years, newer roles have been attributed to NO, ranging from root development to stomatal closure. The molecular mechanisms underlying NO action in plants are just begun to emerge.

View Article and Find Full Text PDF

A decade-long investigation of nitric oxide (NO) functions in plants has led to its characterization as a biological mediator involved in key physiological processes. Despite the wealth of information gathered from the analysis of its functions, until recently little was known about the mechanisms by which NO exerts its effects. In the past few years, part of the gap has been bridged.

View Article and Find Full Text PDF

Anion effluxes are amongst the earliest reactions of plant cells to elicitors of defence responses. However, their properties and their role in disease resistance remain almost unknown. We previously demonstrated that cryptogein, an elicitor of tobacco defence responses, induces a nitrate (NO(3) (-)) efflux.

View Article and Find Full Text PDF

Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities.

View Article and Find Full Text PDF

In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P.

View Article and Find Full Text PDF

Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium.

View Article and Find Full Text PDF
Priming: getting ready for battle.

Mol Plant Microbe Interact

October 2006

Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called "priming." The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress.

View Article and Find Full Text PDF