Publications by authors named "Alain Pocheau"

When a suspension freezes, a compacted particle layer builds up at the solidification front with noticeable implications on the freezing process. In a directional solidification experiment of monodisperse suspensions in thin samples, we evidence a link between the thickness of this layer and the sample depth. We attribute it to an inhomogeneity of particle density that is attested by the evidence of crystallization at the plates and of random close packing far from them.

View Article and Find Full Text PDF

We address the mechanical effect of rigid boundaries on freezing suspensions. For this we perform the directional solidification of monodispersed suspensions in thin samples and we document the thickness h of the dense particle layer that builds up at the solidification front. We evidence a change of regime in the evolution of h with the solidification velocity V with, at large velocity, an inverse proportionality and, at low velocity, a much weaker trend.

View Article and Find Full Text PDF

The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front.

View Article and Find Full Text PDF

Compressing thin sheets usually yields the formation of singularities which focus curvature and stretching on points or lines. In particular, following the common experience of crumpled paper where a paper sheet is crushed in a paper ball, one might guess that elastic singularities should be the rule beyond some compression level. In contrast, we show here that, somewhat surprisingly, compressing a sheet between cylinders make singularities spontaneously disappear at large compression.

View Article and Find Full Text PDF

We experimentally study the level of organization of dendritic sidebranching in directional solidification. For this, we extract successive interface positions at a fixed distance from the dendrite tips and we perform various correlation analyses. The sidebranching signals appear composed of randomly distributed bursts in which sidebranching coherence is surprisingly large and robust.

View Article and Find Full Text PDF