Publications by authors named "Alain Paquette"

Urban heat islands (UHIs) are a common phenomenon in metropolitan areas worldwide where the air temperature is significantly higher in urban areas than in surrounding suburban, rural or natural areas. Mitigation strategies to counteract UHI effects include increasing tree cover and green spaces to reduce heat. The successful application of these approaches necessitates a deep understanding of the thermal tolerances in urban trees and their susceptibility to elevated urban temperatures.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the relationship between tree species diversity and community productivity in forest ecosystems, focusing on the roles of different mycorrhizal associations (arbuscular and ectomycorrhizal fungi) in this relationship.
  • - Results showed that higher tree species richness generally enhances community productivity, particularly when both types of mycorrhizal trees coexist, likely due to complementary interactions between them.
  • - In communities with only ectomycorrhizal trees, species richness positively influenced productivity, but this effect was not seen in communities composed solely of arbuscular mycorrhizal trees, highlighting the importance of mycorrhizal interactions in biodiversity-productivity dynamics.
View Article and Find Full Text PDF

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation.

View Article and Find Full Text PDF

Background And Aims: Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years.

Methods: Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Marsh.

View Article and Find Full Text PDF

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.

View Article and Find Full Text PDF

Scientific consensus is that diverse tree species positively impact forest productivity, especially when species are functionally dissimilar. Under the complementarity hypothesis, differences in species traits reduce competition among neighboring tree species. However, while this relationship has been extensively studied at the community level, there is a lack of understanding regarding how individuals of different species specifically respond to a functionally dissimilar neighborhood.

View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF
Article Synopsis
  • Exotic plants generally show lower herbivore abundance and leaf damage compared to native species, but the reasons behind this are complex and may depend on community context.
  • A comparison of European and North American tree species in both their native and exotic ranges showed consistent patterns of lower herbivory on exotic species across different conditions and locations.
  • The findings suggest that while some lower herbivory is due to "enemy release," it is also influenced by the vulnerability of native plants to herbivores that have not co-evolved with them.
View Article and Find Full Text PDF
Article Synopsis
  • Litter decomposition is an important ecological process in forests, influenced by climate, soil, and local characteristics, making it difficult to assess the specific impacts of these factors.
  • A study using data from 15 tree diversity experiments across multiple countries found that tree species identity and plantation conditions significantly impact the rate of litter decomposition, particularly for low-quality litter.
  • After one year, while temperature mainly affected high-quality litter decomposition, the decomposition of low-quality litter was more related to overstory composition and the age of the tree plantations.
View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF

Examining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration.

View Article and Find Full Text PDF

Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk.

View Article and Find Full Text PDF

Although there is compelling evidence that tree diversity has an overall positive effect on forest productivity, there are important divergences among studies on the nature and strength of these diversity effects and their timing during forest stand development. To clarify conflicting results related to stand developmental stage, we explored how diversity effects on productivity change through time in a diversity experiment spanning 11 years. We show that the strength of diversity effects on productivity progressively increases through time, becoming significantly positive after 9 years.

View Article and Find Full Text PDF

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels.

View Article and Find Full Text PDF

The biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross-boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case.

View Article and Find Full Text PDF

Field studies have shown that dense tree canopies and regular tree arrangements reduce noise from a point source. In urban areas, noise sources are multiple and tree arrangements are rarely dense. There is a lack of data on the association between the urban tree canopy characteristics and noise in complex urban settings.

View Article and Find Full Text PDF

Exposure to allergenic tree pollen is an increasing environmental health issue in urban areas. However, reliable, well-documented, peer-reviewed data on the allergenicity of pollen from common tree species in urban environments are lacking. Using the concept of 'riskscape', we present and discuss evidence on how different tree pollen allergenicity datasets shape the risk for pollen-allergy sufferers in five cities with different urban forests and population densities: Barcelona, Montreal, New York City, Paris, and Vancouver.

View Article and Find Full Text PDF

Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates.

View Article and Find Full Text PDF

Diverse plant communities are often more productive than mono-specific ones. Several possible mechanisms underlie this phenomenon but their relative importance remains unknown. Here we investigated whether light interception alone or in combination with light use efficiency (LUE) of dominant and subordinate species explained greater productivity of mixtures relative to monocultures (i.

View Article and Find Full Text PDF

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide. Regrowing natural forests is a prominent strategy for capturing additional carbon, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation.

View Article and Find Full Text PDF