Urban heat islands (UHIs) are a common phenomenon in metropolitan areas worldwide where the air temperature is significantly higher in urban areas than in surrounding suburban, rural or natural areas. Mitigation strategies to counteract UHI effects include increasing tree cover and green spaces to reduce heat. The successful application of these approaches necessitates a deep understanding of the thermal tolerances in urban trees and their susceptibility to elevated urban temperatures.
View Article and Find Full Text PDFTree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation.
View Article and Find Full Text PDFBackground And Aims: Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years.
Methods: Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Marsh.
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.
View Article and Find Full Text PDFScientific consensus is that diverse tree species positively impact forest productivity, especially when species are functionally dissimilar. Under the complementarity hypothesis, differences in species traits reduce competition among neighboring tree species. However, while this relationship has been extensively studied at the community level, there is a lack of understanding regarding how individuals of different species specifically respond to a functionally dissimilar neighborhood.
View Article and Find Full Text PDFForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.
View Article and Find Full Text PDFUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.
View Article and Find Full Text PDFDetermining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.
View Article and Find Full Text PDFExamining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration.
View Article and Find Full Text PDFUnprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk.
View Article and Find Full Text PDFAlthough there is compelling evidence that tree diversity has an overall positive effect on forest productivity, there are important divergences among studies on the nature and strength of these diversity effects and their timing during forest stand development. To clarify conflicting results related to stand developmental stage, we explored how diversity effects on productivity change through time in a diversity experiment spanning 11 years. We show that the strength of diversity effects on productivity progressively increases through time, becoming significantly positive after 9 years.
View Article and Find Full Text PDFOne of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels.
View Article and Find Full Text PDFThe biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross-boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case.
View Article and Find Full Text PDFField studies have shown that dense tree canopies and regular tree arrangements reduce noise from a point source. In urban areas, noise sources are multiple and tree arrangements are rarely dense. There is a lack of data on the association between the urban tree canopy characteristics and noise in complex urban settings.
View Article and Find Full Text PDFExposure to allergenic tree pollen is an increasing environmental health issue in urban areas. However, reliable, well-documented, peer-reviewed data on the allergenicity of pollen from common tree species in urban environments are lacking. Using the concept of 'riskscape', we present and discuss evidence on how different tree pollen allergenicity datasets shape the risk for pollen-allergy sufferers in five cities with different urban forests and population densities: Barcelona, Montreal, New York City, Paris, and Vancouver.
View Article and Find Full Text PDFAssociational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates.
View Article and Find Full Text PDFDiverse plant communities are often more productive than mono-specific ones. Several possible mechanisms underlie this phenomenon but their relative importance remains unknown. Here we investigated whether light interception alone or in combination with light use efficiency (LUE) of dominant and subordinate species explained greater productivity of mixtures relative to monocultures (i.
View Article and Find Full Text PDFTo constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide. Regrowing natural forests is a prominent strategy for capturing additional carbon, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation.
View Article and Find Full Text PDF