Publications by authors named "Alain Ourry"

Pea is a grain legume crop with a high potential to accelerate the food transition due to its high seed protein content and relatively well-balanced amino acid composition. The critical role of external sulfur (S) supply in determining seed yield and seed quality in pea makes it essential to understand the impact of whole plant S management on the trade-off between these two traits. Here, we investigated the physiological relevance of vacuolar sulfate remobilization by targeting PsSULTR4, the only pea sulfate transporter showing substantial similarity to the vacuolar sulfate exporter AtSULTR4;1.

View Article and Find Full Text PDF

One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. and were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity).

View Article and Find Full Text PDF

Extreme soils often have mineral nutrient imbalances compared to plant nutritional requirements and co-occur in open areas where grazers thrive. Thus, plants must respond to both constraints, which can affect nutrient concentrations in all plant organs. Gypsum soil provides an excellent model system to study adaptations to extreme soils under current grazing practices as it harbours two groups of plant species that differ in their tolerance to gypsum soils and foliar composition.

View Article and Find Full Text PDF

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit.

View Article and Find Full Text PDF

Legume plants, such as peas, are of significant nutritional interest for both humans and animals. However, plant nutrition and thus, seed composition, depends on soil mineral nutrient availability. Understanding the impact of their deprivation on the plant mineral nutrient content, net uptake, and remobilization is of key importance but remains complex as the elements of the plant ionome are linked in intricate networks, one element deprivation impacting uptake and remobilization of other nutrients.

View Article and Find Full Text PDF

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations.

View Article and Find Full Text PDF

The specific variation in the functional ionome was studied in and plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.

View Article and Find Full Text PDF

The composition of the functional ionome was studied in and with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S).

View Article and Find Full Text PDF

Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability.

View Article and Find Full Text PDF

A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg.

View Article and Find Full Text PDF

Elevated tropospheric ozone concentration (O₃) increases oxidative stress in vegetation and threatens the stability of crop production. Current O₃ pollution in the United States is estimated to decrease the yields of maize ( ) up to 10%, however, many bioenergy feedstocks including switchgrass () have not been studied for response to O₃ stress. Using Free Air Concentration Enrichment (FACE) technology, we investigated the impacts of elevated O₃ (~100 nmol mol) on leaf photosynthetic traits and capacity, chlorophyll fluorescence, the Ball⁻Woodrow⁻Berry (BWB) relationship, respiration, leaf structure, biomass and nutrient composition of switchgrass.

View Article and Find Full Text PDF

Determination of S status is very important to detect S deficiency and prevent losses of yield and seed quality. The aim of this study was to investigate the possibility of using the ([Cl]+[NO₃]+[PO₄]):[SO₄] ratio as an indicator of S nutrition under field conditions in and whether this could be applied to other species. Different S and nitrogen (N) fertilizations were applied on a S deficient field of oilseed rape to harvest mature leaves and analyze their anion and element contents in order to evaluate a new S nutrition indicator and useful threshold values.

View Article and Find Full Text PDF

Fluxes through metabolic pathways reflect the integration of genetic and metabolic regulations. While it is attractive to measure all the mRNAs (transcriptome), all the proteins (proteome), and a large number of the metabolites (metabolome) in a given cellular system, linking and integrating this information remains difficult. Measurement of metabolome-wide fluxes (termed the fluxome) provides an integrated functional output of the cell machinery and a better tool to link functional analyses to plant phenotyping.

View Article and Find Full Text PDF

Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake.

View Article and Find Full Text PDF

The composition of the ionome is closely linked to a plant's nutritional status. Under certain deficiencies, cross-talk induces unavoidable accumulation of some nutrients, which upsets the balance and modifies the ionomic composition of plant tissues. Rapeseed plants (Brassica napus L.

View Article and Find Full Text PDF

In order to cope with variable mineral nutrient availability, higher plants have developed numerous strategies including the remobilization of nutrients from source to sink tissues. However, such processes remain relatively unknown for magnesium (Mg), which is the third most important cation in plant tissues. Using Mg depletion of Brassica napus, we have demonstrated that Mg is remobilized from old leaves to young shoot tissues.

View Article and Find Full Text PDF

Background And Aims: Rapeseed (Brassica napus L.) is a Cd/Zn-accumulator whereas soil conditioners such as biochars may immobilize trace elements. These potentially complementary soil remediation options were trialed, singly and in combination, in a pot experiment with a metal(loid)-contaminated technosol.

View Article and Find Full Text PDF

To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined.

View Article and Find Full Text PDF

Identification of early sulphur (S) deficiency indicators is important for species such as Brassica napus, an S-demanding crop in which yield and the nutritional quality of seeds are negatively affected by S deficiency. Because S is mostly stored as SO4 (2-) in leaf cell vacuoles and can be mobilized during S deficiency, this study investigated the impact of S deprivation on leaf osmotic potential in order to identify compensation processes. Plants were exposed for 28 days to S or to chlorine deprivation in order to differentiate osmotic and metabolic responses.

View Article and Find Full Text PDF

Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence.

View Article and Find Full Text PDF

To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration.

View Article and Find Full Text PDF

The importance of zinc (Zn) has been of little concern in human nutrition despite a strong decrease of this element in crops since the rise of high yielding varieties. For better food quality, Zn biofortification can be used, but will be optimal only if mechanisms governing Zn management are better known. Using Zn deficiency, we are able to demonstrate that Zn is not remobilized in Brassica napus (B.

View Article and Find Full Text PDF

During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L.

View Article and Find Full Text PDF

N-Butyl-phosphorotriamide (NBPT) is a fertilizer widely used for its urease inhibiting properties. Nevertheless, formulations currently commercialized are complex and do not avoid severe decrease of activity due to the low stability of the bioactive compound under acidic conditions. According to its structure, NPBT was thought to be able to interact with both polar additives, by its phosphoramide function, and hydrophobic ones, through its alkyl chain.

View Article and Find Full Text PDF

N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization.

View Article and Find Full Text PDF