There has been extensive activity exploring the doping of semiconducting two-dimensional (2D) transition metal dichalcogenides in order to tune their electronic and magnetic properties. The outcome of doping depends on various factors, including the intrinsic properties of the host material, the nature of the dopants used, their spatial distribution, as well as their interactions with other types of defects. A thorough atomic-level analysis is essential to fully understand these mechanisms.
View Article and Find Full Text PDFEnzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His.
View Article and Find Full Text PDFTopological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)Te with 2D FM FeGeTe (FGT).
View Article and Find Full Text PDFRecent research suggests that in central mammalian synapses, active zones contain several docking sites acting in parallel. Before release, one or several synaptic vesicles (SVs) are thought to bind to each docking site, forming the readily releasable pool (RRP). Determining the RRP size per docking site has important implications for short-term synaptic plasticity.
View Article and Find Full Text PDF2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC.
View Article and Find Full Text PDFIn recent years, enzymatic recycling of the widely used polyester polyethylene terephthalate (PET) has become a complementary solution to current thermomechanical recycling for colored, opaque, and mixed PET. A large set of promising hydrolases that depolymerize PET have been found and enhanced by worldwide initiatives using various methods of protein engineering. Despite the achievements made in these works, it remains difficult to compare enzymes' performance and their applicability to large-scale reactions due to a lack of homogeneity between the experimental protocols used.
View Article and Find Full Text PDFWe report molecular simulations of the interaction between poly(ethylene terephthalate) (PET) surfaces and water molecules with a short-term goal to better evaluate the different energy contributions governing the enzymatic degradation of amorphous PET. After checking that the glass transition temperature, density, entanglement mass, and mechanical properties of an amorphous PET are well reproduced by our molecular model, we extend the study to the extraction of a monomer from the bulk surface in different environments, i.e.
View Article and Find Full Text PDFIn central synapses, spontaneous transmitter release observed in the absence of action potential firing is often considered as a random process lacking time or space specificity. However, when studying miniature glutamatergic currents at cerebellar synapses between parallel fibers and molecular layer interneurons, we found that these currents were sometimes organized in bursts of events occurring at high frequency (about 30 Hz). Bursts displayed homogeneous quantal size amplitudes.
View Article and Find Full Text PDFIt is known that endocytosis of synaptic vesicles, and docking of these vesicles to their release sites, are regulated in a similar manner, but it has remained unclear whether the two processes are linked mechanistically. To address this issue, we studied vesicular release during repeated trains of presynaptic action potentials. Synaptic responses decreased when the inter-train interval was shortened, indicating a gradual exhaustion of the recycling pool of vesicles, with a resting size of 180 vesicles per active zone.
View Article and Find Full Text PDFPlastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy.
View Article and Find Full Text PDFMultilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications.
View Article and Find Full Text PDFPlastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy.
View Article and Find Full Text PDFTwo-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe layer produced vdW epitaxy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time.
View Article and Find Full Text PDFThe concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2020
Polylactic acid is a plastic polymer widely used in different applications from printing filaments for 3D printer to mulching films in agriculture, packaging materials, etc. Here, we report the production of poly-D-lactic acid (PDLA) in an engineered yeast strain of . Firstly, the pathway for lactic acid consumption in this yeast was identified and interrupted.
View Article and Find Full Text PDFThe efficient use of the yeast Yarrowia lipolytica as a cell factory is hampered by the lack of powerful genetic engineering tools dedicated for the assembly of large DNA fragments and the robust expression of multiple genes. Here we describe the design and construction of artificial chromosomes (ylAC) that allow easy and efficient assembly of genes and chromosomal elements. We show that metabolic pathways can be rapidly constructed by various assembly of multiple genes in vivo into a complete, independent and linear supplementary chromosome with a yield over 90%.
View Article and Find Full Text PDFIn several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP.
View Article and Find Full Text PDFCentral mammalian synapses release synaptic vesicles in dedicated structures called docking/release sites. It has been assumed that when voltage-dependent calcium entry is sufficiently large, synaptic output attains a maximum value of one synaptic vesicle per action potential and per site. Here we use deconvolution to count synaptic vesicle output at single sites (mean site number per synapse: 3.
View Article and Find Full Text PDFThe search for high-quality transition metal dichalcogenides mono- and multi-layers grown on large areas is still a very active field of investigation. Here, we use molecular beam epitaxy to grow WSe on 15 × 15 mm large mica in the van der Waals regime. By screening one-step growth conditions, we find that very high temperature (>900 °C) and very low deposition rate (<0.
View Article and Find Full Text PDFThe Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst (-Ettingshausen) effect. The recently discovered spin Nernst effect in heavy metals continues to enrich the picture of Nernst effect-related phenomena. However, the collection would not be complete without mentioning the valley degree of freedom benchmarked by the valley Hall effect.
View Article and Find Full Text PDFClaviceps purpurea bifunctional Δ12-hydroxylase/desaturase, CpFAH12, and monofunctional desaturase CpFAD2, share 86% of sequence identity. To identify the underlying determinants of the hydroxylation/desaturation specificity, chimeras of these two enzymes were tested for their fatty acid production in an engineered Yarrowia lipolytica strain. It reveals that transmembrane helices are not involved in the hydroxylation/desaturation specificity whereas all cytosolic domains have an impact on it.
View Article and Find Full Text PDF