Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate.
View Article and Find Full Text PDFWe report syntheses, crystal and electronic structures, and characterization of three new hybrid organic-inorganic halides (R)ZnBr(DMSO), (R)CdBr·DMSO, and (R)CdI(DMSO) (where (R) = C(CH)CHN(CH), and DMSO = dimethyl sulfoxide). The compounds can be conveniently prepared as single crystals and bulk polycrystalline powders using a DMSO-methanol solvent system. On the basis of the single-crystal X-ray diffraction results carried out at room temperature and 100 K, all compounds have zero-dimensional (0D) crystal structures featuring alternating layers of bulky organic cations and molecular inorganic anions based on a tetrahedral coordination around group 12 metal cations.
View Article and Find Full Text PDFWe present a new example of a mononuclear iron(ii) complex exhibiting a correlated spin-crossover (SCO) transition and strong fluorescence, whose coordination sphere is saturated, for the first time, by six phosphorescent ligands. The interplay between SCO and light emission properties in the thermal region of the spin transition was investigated by means of magnetic, fluorescence, optical absorption and optical microscopy measurements on a single crystal. Overall, the results show an excellent correlation between fluorescence and magnetic data of the present gradual transition, indicating an extreme sensitivity of the optical activity of the ligand to the spin state of the active iron(ii) ions.
View Article and Find Full Text PDFWe report on the efficient room-temperature photoluminescence (PL) quenching of ZnO in the presence of 2,4-dinitrotoluene (DNT) vapor and for concentration as low as 180 ppb. Compared to ZnO thin films, ZnO nanowires exhibit a strong (95%) and fast (41 s) quenching of the PL intensity in the presence of DNT vapor. Assuming that the PL quenching is due to a trapping of the ZnO excitons by adsorbed DNT molecules, Monte-Carlo calculations show that the nanometric dimensions as well as the better crystallographic quality (longer mean free path) of the ZnO nanowires result in an enhanced trapping process at the origin of the improved sensing properties of the nanowires.
View Article and Find Full Text PDF