Publications by authors named "Alain Lombet"

Background: Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis.

View Article and Find Full Text PDF

Objective: The concept of inflammation-induced sensitization is emerging in the field of perinatal brain injury, stroke, Alzheimer disease, and multiple sclerosis. However, mechanisms underpinning this process remain unidentified.

Methods: We combined in vivo systemic lipopolysaccharide-induced or interleukin (IL)-1β-induced sensitization of neonatal and adult rodent cortical neurons to excitotoxic neurodegeneration with in vitro IL-1β sensitization of human and rodent neurons to excitotoxic neurodegeneration.

View Article and Find Full Text PDF

Objective: Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation.

View Article and Find Full Text PDF

CXCL12 (SDF-1), which binds CXCR4, is involved in several physiological and pathophysiological processes. In heart, this axis seems to play a key role in cardiogenesis and is involved in the neovascularization of ischemic tissues. Rats have three known CXCL12 mRNA isoforms, of which only alpha and gamma are present in the normal heart.

View Article and Find Full Text PDF

We recently reported that proteinase-activated receptors type I (PAR-1) are coupled to both negative and positive invasion pathways in colonic and kidney cancer cells cultured on collagen type I gels. Here, we found that treatments with the cell-permeant analog 8-Br-cGMP and the soluble guanylate cyclase activator BAY41-2272, and Rho kinase (ROK) inhibition by Y27632 or a dominant negative form of ROK lead to PAR-1-mediated invasion through differential Rac1 and Cdc42 signaling. Hypoxia or the counteradhesive matricellular protein SPARC/BM-40 (SPARC: secreted protein acidic rich in cysteine) overexpressed during cancer progression also commutated PAR-1 to cellular invasion through the cGMP/protein kinase G (PKG) cascade, RhoA inactivation, and Rac1-dependent or -independent signaling.

View Article and Find Full Text PDF

The capacity of embryonic stem cells (ES cells) to differentiate into neuronal cells represents a potential source for neuronal replacement and a model for studying factors controlling early stages of neuronal differentiation. Various molecules have been used to induce such differentiation but so far neuropeptides acting via functional G-protein-coupled receptors (GPCRs) have not been investigated. Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides expressed in early development which affect neuronal precursor proliferation and neuronal differentiation.

View Article and Find Full Text PDF

The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling.

View Article and Find Full Text PDF

Oxygen species may be formed in the air spaces of the respiratory tract in response to environmental pollution such as particulate matter. The mechanisms and target molecules of these oxidants are still mainly unknown but may involve modifications of the ionic homeostasis in epithelial cells. Cytosolic concentrations of Ca2+ (Fura2) and Na+ (SBFI) and short-circuit current (Isc) were followed in primary cultures of human nasal epithelial cells and in the cell line 16HBE14o- after exposure to H2O2 or *OH (H2O2 + Fe2+).

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate whether cultured human corneal fibroblasts express functional chemokine CXCR4 receptors on their cell surface and to determine the presence of its specific ligand, SDF-1 (CXCL12), in human corneal fibroblasts.

Methods: Human corneal fibroblast cultures were obtained using human donor corneas. CXCR4 receptors were characterized using binding studies and autoradiography with [125I]SDF-1.

View Article and Find Full Text PDF

Endothelin-1 (ET-1) exerts many biological effects in airways, including bronchoconstriction, airway mucus secretion, cell proliferation, and inflammation. We investigated the effect of ET-1 on Na absorption and Cl secretion in human bronchial epithelial cells. Addition of 10(-7) M ET-1 had no effect on the inhibition of the short circuit current (Isc) induced by amiloride, a Na channel blocker.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein-3, IGFBP-3, specifically binds to IGFs with high affinity, but it is also capable of modulating the IGF-I signalling pathway or inducing apoptosis independently of its binding to IGFs. The molecular mechanisms underlying the action of IGFBP-3 have not been elucidated. In this study, we have demonstrated that binding of IGFBP-3 to a cell surface receptor in MCF-7 breast carcinoma cells induces a rapid and transient increase in intracellular free calcium.

View Article and Find Full Text PDF

Purpose: The purpose of the study was to investigate whether cultured human keratocytes express the neurotensin receptors (NTR1, NTR2, and NTR3), to determine the presence of neurotensin (NT) in keratocytes, and to assess the influence of NT on these cells.

Methods: Human keratocytes were cultured in medium treated with various concentrations (10(-7)-10(-9) M) of JMV449 (a weakly degradable NT agonist). Cell proliferation and viability were analyzed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay.

View Article and Find Full Text PDF

We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives.

View Article and Find Full Text PDF