Cellular adhesion and migration are key functions that are disrupted in numerous diseases. We report that desmin, a type-III muscle-specific intermediate filament, is a novel cell adhesion regulator. Expression of p.
View Article and Find Full Text PDFVimentin, an abundant cytoplasmic intermediate filament protein, is recognized for its important role in stabilizing intracellular structure. Vimentin has been recognized for its mechanical role in cell plasticity and stress absorbers. Additionally, the functions of vimentin, similar to all other cytoplasmic intermediate filaments, are correlated to its ability to interact with cellular components responsible for signaling as well as kinases, therefore exerting control on gene regulatory networks.
View Article and Find Full Text PDFDesmin is a muscle-specific protein belonging to the intermediate filament family. Desmin mutations are linked to skeletal muscle defects, including inherited myopathies with severe clinical manifestations. The aim of this study was to examine the role of desmin in skeletal muscle remodeling and performance gain induced by muscle mechanical overloading which mimics resistance training.
View Article and Find Full Text PDFBackground: Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype.
Methods: We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation.
Key Points: Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix. Deletion of the desmin gene in mdx mice [double knockout (DKO) mice] induces marked muscle weakness and fatigue resistance compared to mdx mice. Muscle fragility (higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice.
View Article and Find Full Text PDFDesminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition.
View Article and Find Full Text PDFMyofibrillar myopathies (MFMs) are muscular disorders involving proteins that play a role in the structure, maintenance processes and protein quality control mechanisms closely related to the Z-disc in the muscular fibers. MFMs share common histological characteristics including progressive disorganization of the interfibrillar network and protein aggregation. Currently no treatment is available.
View Article and Find Full Text PDFDesminopathies, a subgroup of myofibrillar myopathies (MFMs), the progressive muscular diseases characterized by the accumulation of granulofilamentous desmin-positive aggregates, result from mutations in the desmin gene (DES), encoding a muscle-specific intermediate filament. Desminopathies often lead to severe disability and premature death from cardiac and/or respiratory failure; no specific treatment is currently available. To identify drug-targetable pathophysiological pathways, we performed pharmacological studies in C2C12 myoblastic cells expressing mutant DES.
View Article and Find Full Text PDFDisease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation.
View Article and Find Full Text PDFTWO MAJOR PATHWAYS DEGRADE MOST CELLULAR PROTEINS IN EUKARYOTIC CELLS: the ubiquitin-proteasome system (UPS), which usually degrades the majority of proteins, and autophagy, primarily responsible for the degradation of most long-lived or aggregated proteins and cellular organelles. Disruption of these processes can contribute to pathology of a variety of diseases. Further, both pathways are critical for the maintenance of several aspects of cellular homeostasis, but, until recently, were thought to be largely distinct.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2010
Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFkappaB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis.
View Article and Find Full Text PDFDesmin myopathy is a heterogeneous neuromuscular disorder characterized by skeletal myopathy and cardiomyopathy, inherited mostly in an autosomal dominant pattern. We report a five generation Uruguayan family with severe cardiomyopathy and skeletal myopathy. Its most striking features are: atrial dilation, arrhythmia, conduction block and sudden death due to conduction impairment.
View Article and Find Full Text PDFBackground: Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties.
View Article and Find Full Text PDFSmall heat shock proteins (sHSPs) act as chaperone, but also in protecting the different cytoskeletal components. Recent results suggest that alphaB-crystallin, a member of sHSPs family, might regulate actin filament dynamics, stabilize them in a phosphorylation dependent manner, and protect the integrity of intermediate filaments (IF) against extracellular stress. We demonstrate that vinblastin and cytochalasin D, which respectively disorganize microtubules and actin microfilaments, trigger the activation of the p38/MAPKAP2 kinase pathway and lead to the specific alphaB-crystallin phosphorylation at serine 59.
View Article and Find Full Text PDFNF-kappa B plays crucial roles in the nervous system, including potential roles in long-term responses to synaptic plasticity, pro- or antiapoptotic effects during developmental cell death, and neurodegenerative disorders. We report here the characterization of signaling pathways leading to the constitutive activation of NF-kappa B in primary cultures of neonatal cerebellar granule neurons, consecutive to calcium entry into the cytosol. We found that opening of calcium channels at the plasma membrane and at intracellular stores is indispensable for the basal NF-kappa B activity.
View Article and Find Full Text PDFListeriolysin O (LLO) is a pore-forming cytolysin secreted by the pathogen Listeria monocytogenes and is required for its intracellular survival. We recently demonstrated that in endothelial cells, LLO activates the NF-kappaB signalling pathway. In this work, we studied the LLO-induced molecular cascade of NF-kappaB activation with a cellular model extensively used to analyse the signalling pathway of NF-kappaB activation, i.
View Article and Find Full Text PDFSecretory type IIA phospholipase A(2) (sPLA(2)-IIA) is a critical enzyme involved in inflammatory diseases. We have previously identified alveolar macrophages (AMs) as the major pulmonary source of lipopolysaccharide (LPS)-induced sPLA(2)-IIA expression in a guinea pig model of acute lung injury (ALI). Here, we examined the role of arachidonic acid (AA) in the regulation of basal and LPS-induced sPLA(2)-IIA expression in AMs.
View Article and Find Full Text PDF