Publications by authors named "Alain Li"

Anion exchange membrane fuel cells (AEMFCs) can produce clean electricity without the need for platinum-group metals at the cathode. To improve their durability and performance, most research investigations so far have focused on optimizing the catalyst and anion exchange membrane, while few studies have been dedicated to the effect of the ionomer. Herein, we address this gap by developing a poly(ionic liquid)-based ionomer and studying its effect on oxygen transport and oxygen reduction kinetics, in comparison to the commercial proton exchange and anion exchange ionomers Nafion and Fumion.

View Article and Find Full Text PDF
Article Synopsis
  • Atomic iron (Fe) in nitrogen-doped carbon (FeNC) catalysts shows promise as a substitute for platinum-group metals in fuel cells, but challenges in synthesis and stability persist.
  • A new two-step synthesis method enhances Fe-loading and electrochemical activity, yet achieving adequate porosity for active site exposure remains difficult.
  • This study introduces a highly porous support that boosts Fe utilization to 52% and reveals stable single-atom Fe configurations, supported by advanced spectroscopy and theoretical calculations.
View Article and Find Full Text PDF

The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals.

View Article and Find Full Text PDF

Single-atom catalysts, in particular the Fe-N-C family of materials, have emerged as a promising alternative to platinum group metals in fuel cells as catalysts for the oxygen reduction reaction. Numerous theoretical studies have suggested that dual atom catalysts can appreciably accelerate catalytic reactions; nevertheless, the synthesis of these materials is highly challenging owing to metal atom clustering and aggregation into nanoparticles during high temperature synthesis treatment. In this work, dual metal atom catalysts are prepared by controlled post synthetic metal-coordination in a CN-like material.

View Article and Find Full Text PDF