Despite extensive research efforts, reconstruction of gene regulatory networks (GRNs) from transcriptomics data remains a pressing challenge in systems biology. While non-linear approaches for reconstruction of GRNs show improved performance over simpler alternatives, we do not yet have understanding if joint modelling of multiple target genes may improve performance, even under linearity assumptions. To address this problem, we propose two novel approaches that cast the GRN reconstruction problem as a blend between regularized multivariate regression and graphical models that combine the L2,1-norm with classical regularization techniques.
View Article and Find Full Text PDFGenomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions.
View Article and Find Full Text PDFBioinformatics
September 2021
Motivation: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistical testing with the idea of improving predictions, it does not facilitate mechanistic understanding of the contribution of particular single nucleotide polymorphisms (SNP).
View Article and Find Full Text PDF