Publications by authors named "Alain Graciaa"

Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms "microemulsion" and "curvature" in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape.

View Article and Find Full Text PDF

Alkyl and aryl isoselenocyanates are well known intermediates in the synthesis of various organoselenium compounds, but the knowledge of the physicochemical properties of simple unsaturated derivatives is still fragmentary. Vinyl-, 2-propenyl-, and cyclopropyl isoselenocyanates have been prepared by reaction of selenium in powder with the corresponding isocyanides. The isoselenocyanates of this series, with a variable distance between the N═C═Se group and the unsaturated or pseudounsaturated group, have been studied by UV-photoelectron spectroscopy and quantum-chemical calculations.

View Article and Find Full Text PDF

The importance of having reliable calculation tools to interpret and predict the electronic properties of BN-aromatics is directly linked to the growing interest for these very promising new systems in the field of materials science, biomedical research, or energy sustainability. Ionization energy (IE) is one of the most important parameters to approach the electronic structure of molecules. It can be theoretically estimated, but in order to evaluate their persistence and propose the most reliable tools for the evaluation of different electronic properties of existent or only imagined BN-containing compounds, we took as reference experimental values of ionization energies provided by ultra-violet photoelectron spectroscopy (UV-PES) in gas phase-the only technique giving access to the energy levels of filled molecular orbitals.

View Article and Find Full Text PDF

The synthesis of two parental BN anthracenes, 1 and 2, was developed, and their electronic structure and reactivity behavior were characterized in direct comparison with all-carbon anthracene. Gas-phase UV-photoelecton spectroscopy studies revealed the following HOMO energy trend: anthracene, -7.4 eV; BN anthracene 1, -7.

View Article and Find Full Text PDF

We present a comprehensive electronic structure analysis of two BN isosteres of indole using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of external BN indole I and fused BN indole II have been recorded, assessed by density functional theory calculations, and compared with natural indole. The first ionization energies of these indoles are natural indole (7.

View Article and Find Full Text PDF

We present a comprehensive electronic structure analysis of structurally simple BN heterocycles using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of 1,2-dihydro-1,2-azaborine 1, N-Me-1,2-BN-toluene 2, and N-Me-1,3-BN-toluene 3 have been recorded, assessed by density functional theory calculations, and compared with their corresponding carbonaceous analogues benzene and toluene. The first ionization energies of these BN heterocycles are in the order N-Me-1,3-BN-toluene 3 (8.

View Article and Find Full Text PDF

Simple unsaturated and cyclopropylic isocyanides are synthesized by an efficient and simple approach. These compounds with gradually increasing distance between the unsaturated moiety and the isonitrile group are studied by UV photoelectron spectroscopy and quantum chemical calculations, and also compared to the corresponding nitriles. The first photoelectron band of the unsaturated compounds is linked to removal of an electron from the HOMO, which corresponds to CC multiple-bond ionization in antibonding interaction with the π-isocyanide bond (in the same plane) for conjugated systems, or in antibonding interaction with the pseudo-π-CH(2) group for isolated systems.

View Article and Find Full Text PDF

Despite claims, based largely on molecular dynamics simulations, that the surface of water at the air/water interface is acidic, with a positive charge, there is compelling experimental evidence that it is in fact basic, with a negative charge due to the specific adsorption of hydroxide ions. The oil/water interface behaves similarly. The pH dependence of the zeta potentials of oil drops has been measured by two very different techniques: on a single drop in a rotating electrophoresis cell and on about 10(14) submicrometer drops in a 2 vol % emulsion by an electroacoustic method to give similar results with a sigmoidal pH dependence characterized by an isoelectric point at pH 2-3 and a half adsorption point about pH 5.

View Article and Find Full Text PDF

Beta-heterosubstituted acrylonitriles correspond to the formal addition of nucleophiles on cyanoacetylene. Acrylonitriles substituted with an amino, methoxy, mercapto group, or halogeno atom have been synthesized. Rearrangements between Z and E stereoisomers or tautomerizations have been studied by NMR spectroscopy and by quantum calculations.

View Article and Find Full Text PDF

The dehydrohalogenation of gaseous dichloromethylarsine on solid base led to chloromethylidenearsine and, at higher temperature of the base, to methylidynearsine, the third unsubstituted heteroalkyne unambiguously synthesized up to now.

View Article and Find Full Text PDF

A method for modeling the heating curve for gas hydrate dissociation in porous media at isochoric conditions (constant cell volume) is presented. This method consists of using an equation of state of the gas, the cumulative volume distribution (CVD) of the porous medium, and a van der Waals-Platteeuw-type thermodynamic model that includes a capillary term. The proposed method was tested to predict the heating curves for methane hydrate dissociation in a mesoporous silica glass for saturated conditions (liquid volume = pore volume) and for a fractional conversion of water to hydrate of 1 (100% of the available water was converted to hydrate).

View Article and Find Full Text PDF

Because their affinities for the oil and water phases vary considerably with the number of ethylene oxide units in their hydrophilic group, the ethoxylated nonionic species occurring in commercial products tend to behave in a non-collective way, with the low ethoxylation oligomers partitioning mostly in the oil phase. This results in a surfactant mixture at the interface which is more hydrophilic than the one which was introduced in the system in the first place. The pseudophase model is used to study the partitioning in Winsor III type systems, and to estimate the deviation of the interfacial mixture composition from the overall one.

View Article and Find Full Text PDF

The dilatational viscoelasticity behaviors of water/oil interfaces formed with a crude oil and its distilled fractions diluted in cyclohexane were investigated by means of an oscillating drop tensiometer. The rheological study of the w/o interfaces at different frequencies has shown that the stable w/o emulsions systematically correspond to interfaces which present the rheological characteristics of a 2D gel near its gelation point. The stability of emulsions was found to increase with both the gel strength and the glass transition temperature of the gel.

View Article and Find Full Text PDF

Static and dynamic tensiometries show that a newly prepared water/asphaltenated cyclohexane interface behaves as expected: the mean area occupied per asphaltene molecule is 2 nm2, and variations of interfacial tension and dilatational elastic modulus with time indicate that equilibrium is reached more slowly than that for usual surfactants. The use of the time/temperature superposition principle allows a detailed rheological study of a 2 day old interface of the same type which has reached equilibrium. It is found that the two-dimensional asphaltene network exhibits a glass transition zone, behaves as a gel near its gelation point, and is built by a universal process of aggregation.

View Article and Find Full Text PDF